OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 2 — Jan. 10, 2011
  • pp: 237–241

All-optical XOR gate with optical feedback using highly Ge-doped nonlinear fiber and a terahertz optical asymmetric demultiplexer

Mable P. Fok and Paul R. Prucnal  »View Author Affiliations


Applied Optics, Vol. 50, Issue 2, pp. 237-241 (2011)
http://dx.doi.org/10.1364/AO.50.000237


View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate an all-optical exclusive-OR (XOR) gate with optical feedback using a highly Ge-doped nonlinear fiber. The XOR is achieved based on cross-polarization rotation in nonlinear fiber, while the optical feedback employs a terahertz optical asymmetric demultiplexer (TOAD). The TOAD simultaneously cleans up the XOR output and converts the wavelength of the feedback signal to allow proper feedback operation. The performance of the all-optical XOR gate with optical feedback is studied through both experimental and simulation analysis. An open eye diagram of the XOR output in feedback mode is obtained experimentally, and a correct logic operation in feedback mode is proved through simulation.

© 2011 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.3750) Optical devices : Optical logic devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 20, 2010
Revised Manuscript: November 11, 2010
Manuscript Accepted: November 12, 2010
Published: January 7, 2011

Citation
Mable P. Fok and Paul R. Prucnal, "All-optical XOR gate with optical feedback using highly Ge-doped nonlinear fiber and a terahertz optical asymmetric demultiplexer," Appl. Opt. 50, 237-241 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-2-237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Jinno and T. Matsumoto, “Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams,” Opt. Lett. 16, 220–222 (1991). [CrossRef] [PubMed]
  2. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002). [CrossRef]
  3. H. Soto, D. Erasme, and G. Guekos, “5 Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13, 335–337 (2001). [CrossRef]
  4. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000). [CrossRef]
  5. J. M. Martinez, F. Ramos, and J. Marti, “All-optical packet header processor based on cascaded SOA-MZIs,” Electron. Lett. 40, 894–895 (2004). [CrossRef]
  6. C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005). [CrossRef]
  7. K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron. 3, 698–701(1997). [CrossRef]
  8. M. P. Fok and P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34, 1315–1317 (2009). [CrossRef] [PubMed]
  9. M. P. Fok and C. Shu, “Exclusive-OR gate for RZ-DPSK signals using four-wave mixing in a highly nonlinear bismuth-oxide fiber,” in European Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, 2007), paper CD6-3.
  10. D. M. Lai, C. H. Kwok, and K. K. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362–18370 (2008). [CrossRef] [PubMed]
  11. A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “160 Gb/s time-domain channel extraction/insertion and all-optical logic operations exploiting a single PPLN waveguide,” J. Lightwave Technol. 27, 4221–4227 (2009). [CrossRef]
  12. J. M. Martinez, J. Herrera, F. Ramos, and J. Marti, “All-optical correlation employing single logic XOR gate with feedback,” Electron. Lett. 42, 1170–1171 (2006). [CrossRef]
  13. A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999). [CrossRef]
  14. W. Trappe and L. C. Washington, Introduction to Cryptography with Coding Theory, 2nd ed. (Prentice-Hall, 2005).
  15. M. P. Fok, W. Trappe, and P. R. Prucnal, “All-optical XOR gate with feedback using highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OWF7.
  16. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993). [CrossRef]
  17. E. Dianov and V. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23, 3500–3508 (2005). [CrossRef]
  18. K. Kravtsov, Y.-K. Huang and P. R. Prucnal, “All-optical 160 Gbits/s time-domain demultiplexer based on the heavily GeO2-doped silica-based nonlinear fiber,” Opt. Lett. 34, 491–493 (2009). [CrossRef] [PubMed]
  19. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122(2007). [CrossRef] [PubMed]
  20. M. P. Fok and P. R. Prucnal, “Four-wave mixing in highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OMG4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited