OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 3987–3999

Calibration of the 1064 nm lidar channel using water phase and cirrus clouds

Yonghua Wu, Chuen Meei Gan, Lina Cordero, Barry Gross, Fred Moshary, and Sam Ahmed  »View Author Affiliations


Applied Optics, Vol. 50, Issue 21, pp. 3987-3999 (2011)
http://dx.doi.org/10.1364/AO.50.003987


View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Calibration is essential to derive aerosol backscatter coefficients from elastic scattering lidar. Unlike the visible UV wavelengths where calibration is based on a molecular reference, calibration of the 1064 nm lidar channel requires other approaches, which depend on various assumptions. In this paper, we analyze two independent calibration methods which use (i) low-altitude water phase clouds and (ii) high cirrus clouds. In particular, we show that to achieve optimal performance, aerosol attenuation below the cloud base and cloud multiple scattering must be accounted for. When all important processes are considered, we find that these two independent methods can provide a consistent calibration constant with relative differences less than 15%. We apply these calibration techniques to demonstrate the stability of our lidar on a monthly scale, along with a natural reduction of the lidar efficiency on an annual scale. Furthermore, our calibration procedure allows us to derive consistent aerosol backscatter coefficients and angstrom coefficient profiles ( 532 1064 nm ) along with column extinction-to-backscatter ratios which are in good agreement with sky radiometer inversions.

© 2011 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar
(010.1615) Atmospheric and oceanic optics : Clouds

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: November 22, 2010
Revised Manuscript: May 24, 2011
Manuscript Accepted: May 24, 2011
Published: July 14, 2011

Citation
Yonghua Wu, Chuen Meei Gan, Lina Cordero, Barry Gross, Fred Moshary, and Sam Ahmed, "Calibration of the 1064 nm lidar channel using water phase and cirrus clouds," Appl. Opt. 50, 3987-3999 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-21-3987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979). [CrossRef] [PubMed]
  2. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  3. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  4. M. J. Reagan, X. Wang, and M. J. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geosci. Remote Sens. 40, 2285–2290 (2002). [CrossRef]
  5. M. Osborn, J. Reagan, and X. Wang, “An operational space-borne lidar calibration algorithm for 1064 nm,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 777–780.
  6. J. Zhang and H. Hu, “Lidar calibration: a new method,” Appl. Opt. 36, 1235–1238 (1997). [CrossRef] [PubMed]
  7. M. Pahlow, V. A. Kovalev, and M. Parlange, “Calibration method for mutiangle lidar measurements,” Appl. Opt. 43, 2948–2956 (2004). [CrossRef] [PubMed]
  8. J. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000). [CrossRef]
  9. E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777–778 (2004). [CrossRef]
  10. J. Zhang, “A lidar calibration method by water cloud,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 625–628.
  11. Y. Hu, “Using water clouds for lidar calibration,” in Laser Applications to Chemical, Security and Environmental Analysis, Technical Digest (Optical Society of America, 2006), paper TuA4.
  12. C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.
  13. Z. Tao, M. P. McCormick, D. Wu, Z. Liu, and M. A. Vaughan, “Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar,” Appl. Opt. 47, 1478–1485 (2008). [CrossRef] [PubMed]
  14. M. A. Vaughan, Z. Liu, M. McGill, Y. Hu, and M. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. 115, D14206 (2010). [CrossRef]
  15. L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009). [CrossRef]
  16. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  17. Y. Wu, S. Chaw, B. Gross, F. Moshary, and S. Ahmed, “Low and optically thin cloud measurements using a Raman-Mie lidar,” Appl. Opt. 48, 1218–1227 (2009). [CrossRef]
  18. R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.
  19. C. Münkel and J. Räsänen, “New optical concept for commercial lidar ceilometers scanning the boundary layer,” Proc. SPIE 5571, 364–374 (2004). [CrossRef]
  20. N. L. Miles, J. Verlinde, and E. E. Clothiaux, “Cloud droplet size distributions in low-level stratiform clouds,” J. Atmos. Sci. 57, 295–311 (2000). [CrossRef]
  21. R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787–6796 (1983). [CrossRef]
  22. R. H. Dubinsky, A. I. Carswell, and S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1622 (1985). [CrossRef] [PubMed]
  23. C. M. R. Platt, “Remote sounding of high clouds. III. Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981). [CrossRef]
  24. J. D. Spinhirne, R. Boers, and W. D. Hart, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989). [CrossRef]
  25. K. Kunkel and J. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976). [CrossRef]
  26. E. W. Eloranta, “A practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998). [CrossRef]
  27. U. Wandinger, “Multiple-scattering influence on extinction and backscatter coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  28. M. D. King, S. Tsay, S. E. Platnick, M. H. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS algorithm theoretical basis document,” ATBD-MOD-05, MOD06–Cloud product, NASA Goddard Space Flight Center, 1997.
  29. R. J. Hogan, “Fast approximate calculation of multiply scattered lidar returns,” Appl. Opt. 45, 5984–5992 (2006). [CrossRef] [PubMed]
  30. E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002). [CrossRef]
  31. K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001). [CrossRef]
  32. C. Currie and S. Valencia, “Evaluation of the micro-pulse LIDAR clibration cnstant,” in Proceeding of 22nd International Laser Radar Conference, G.Pappalardo and A.Amodeo, eds. (European Space Agency, 2004), pp. 279–282.
  33. L. W. Thomson, S. P. Burton, B. P. Luo, and T. Peter, “SAGE II measurements of stratospheric aerosol properties at non-volcanic levels,” Atmos. Chem. Phys. 8, 983–995 (2008). [CrossRef]
  34. J. Bosenberg and R. Hoff, “Plan for the implementation of the GAW aerosol lidar observation network GALION,” Global Atmosphere Watch report 178, World Meteorological Organization/TD 1443, World Meteorological Organization, 2007.
  35. A. H. Omar, J. G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14 (2005). [CrossRef]
  36. K. Tomine, C. Hirayama, K. Michimoto, and N. Takeuchi, “Experimental determination of the crossover function in the laser radar equation for days with a light mist,” Appl. Opt. 28, 2194–2195 (1989). [CrossRef] [PubMed]
  37. D. K. Lynch, K. Sassen, D. C. Starr, and G. Stephens, Cirrus (Oxford University, 2002), p. 274.
  38. K. N. Liou, Y. Takano, S. C. Ou, and M. W. Johnson, “Laser transmission through thin cirrus clouds,” Appl. Opt. 39, 4886–4894 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited