OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 4083–4090

Basic Fourier properties for generalized phase shifting and some interesting detuning insensitive algorithms

Alejandro Téllez-Quiñones, Daniel Malacara-Doblado, and Jorge García-Márquez  »View Author Affiliations

Applied Optics, Vol. 50, Issue 21, pp. 4083-4090 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (460 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this manuscript, some interesting properties for generalized or nonuniform phase-shifting algorithms are shown in the Fourier frequency space. A procedure to find algorithms with equal amplitudes for their sampling function transforms is described. We also consider in this procedure the finding of algorithms that are orthogonal for all possible values in the frequency space. This last kind of algorithms should closely satisfy the first order detuning insensitive condition. The procedure consists of the minimization of functionals associated with the desired insensitivity conditions.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 29, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 13, 2011
Published: July 15, 2011

Alejandro Téllez-Quiñones, Daniel Malacara-Doblado, and Jorge García-Márquez, "Basic Fourier properties for generalized phase shifting and some interesting detuning insensitive algorithms," Appl. Opt. 50, 4083-4090 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Freischlad and C. L. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7, 542–551 (1990). [CrossRef]
  2. D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis for Optical Testing (CRC, 2005). [CrossRef]
  3. G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” J. Opt. Soc. Am. A 8, 822–826 (1991). [CrossRef]
  4. C. J. Morgan, “Least-squares estimation in phase-measurement interferometry,” Opt. Lett. 7, 368–370 (1982). [CrossRef] [PubMed]
  5. N. Ohyama, S. Kinoshita, A. Cornejo-Rodriguez, T. Honda, and J. Tsujiuchi, “Accuracy of phase determination with unequal reference shift,” J. Opt. Soc. Am. A 5, 2019–2025(1988). [CrossRef]
  6. J. Xu, Q. Xu, and L. Chai, “Iterative algorithm for phase extraction from interferograms with random and spatially nonuniform phase shifts,” Appl. Opt. 47, 480–485 (2008). [CrossRef] [PubMed]
  7. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997). [CrossRef]
  8. Y. Surrel, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts: comment,” J. Opt. Soc. Am. A 15, 1227–1233 (1998). [CrossRef]
  9. P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34, 3553–3555 (2009). [CrossRef] [PubMed]
  10. L. Z. Cai, Q. Liu, and X. L. Yang, “Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects,” Opt. Lett. 29, 183–185 (2004). [CrossRef] [PubMed]
  11. X. F. Xu, L. Z. Cai, Y. R. Wang, X. F. Meng, W. J. Sun, H. Zhang, X. C. Cheng, G. Y. Dong, and X. X. Shen, “Simple direct extraction of unknown phase shift and wavefront reconstruction in generalized phase-shifting interferometry: algorithm and experiments,” Opt. Lett. 33, 776–778 (2008). [CrossRef] [PubMed]
  12. A. Téllez-Quiñones and D. Malacara-Doblado, “Inhomogeneous phase shifting: an algorithm for non-constant phase displacements,” Appl. Opt. 49, 6224–6231 (2010). [CrossRef] [PubMed]
  13. D. Malacara-Doblado and B. V. Dorrío, “Family of detuning-insensitive phase-shifting algorithms,” J. Opt. Soc. Am. A 17, 1857–1863 (2000). [CrossRef]
  14. E. H. Lieb and M. Loss, Analysis, 2nd ed. (American Mathematical Society, 2001).
  15. J. Nocedal and S. J. Wright, Numerical Optimization(Springer, 1999). [CrossRef]
  16. C. R. Vogel, Computational Methods for Inverse Problems (SIAM, 2000).
  17. K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for Non-Linear Least Squares Problems, 2nd ed. (IMM, Technical University of Denmark, 2004).
  18. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432(1983). [CrossRef] [PubMed]
  19. P. Hariharan, B. F. Oreb, and T. Eyui, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987). [CrossRef] [PubMed]
  20. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619(1995). [CrossRef] [PubMed]
  21. M. Servín, D. Malacara, J. L. Marroquín, and F. J. Cuevas, “Complex linear filters for phase shifting with very low detuning sensitivity,” J. Mod. Opt. 44, 1269–1278(1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited