OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 4099–4104

Far infrared thermal detectors for laser radiometry using a carbon nanotube array

John H. Lehman, Bob Lee, and Erich N. Grossman  »View Author Affiliations

Applied Optics, Vol. 50, Issue 21, pp. 4099-4104 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (611 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a description of a 1.5 mm long, vertically aligned carbon nanotube array (VANTA) on a thermopile and separately on a pyroelectric detector. Three VANTA samples, having average lengths of 40 μm , 150 μm , and 1.5 mm were evaluated with respect to reflectance at a laser wavelength of 394 μm ( 760 GHz ), and we found that the reflectance decreases substantially with increasing tube length, ranging from 0.38 to 0.23 to 0.01, respectively. The responsivity of the thermopile by electrical heating ( 98.4 mA / W ) was equal to that by optical heating ( 98.0 mA / W ) within the uncertainty of the measurement. We analyzed the frequency response and temporal response and found a thermal decay period of 500 ms , which is consistent with the specific heat of comparable VANTAs in the literature. The extremely low (0.01) reflectance of the 1.5 mm VANTAs and the fact that the array is readily transferable to the detector’s surface is, to our knowledge, unprecedented.

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(260.3090) Physical optics : Infrared, far
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 3, 2011
Revised Manuscript: June 24, 2011
Manuscript Accepted: June 28, 2011
Published: July 18, 2011

John H. Lehman, Bob Lee, and Erich N. Grossman, "Far infrared thermal detectors for laser radiometry using a carbon nanotube array," Appl. Opt. 50, 4099-4104 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010). [CrossRef] [PubMed]
  2. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009). [CrossRef] [PubMed]
  3. D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689–696 (1985). [CrossRef]
  4. I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006). [CrossRef]
  5. M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009). [CrossRef]
  6. F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997). [CrossRef]
  7. E. Theocharous, C. Engtrakul, A. C. Dillon, and J. Lehman, “Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating,” Appl. Opt. 47, 3999–4003(2008). [CrossRef] [PubMed]
  8. H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977). [CrossRef]
  9. L. Ci, S. M. Manikoth, X. Li, R. Vajtai, and P. M. Ajayan, “Ultrathick freestanding aligned carbon nanotube films,” Adv. Mater. 19, 3300–3303 (2007). [CrossRef]
  10. M. A. Ordal, R. J. Bell, J. R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988). [CrossRef] [PubMed]
  11. E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).
  12. I. Vayshenker, X. Li, D. J. Livigni, T. R. Scott, and C. L. Cromer, “Optical fiber power meter calibrations at NIST,” N. M. Services, ed. (National Institute of Standards and Technology (NIST), 2000), p. 36.
  13. H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002). [CrossRef] [PubMed]
  14. S. M. Smith, “Specular reflectance of optical-black coatings in the far infrared,” Appl. Opt. 23, 2311–2326 (1984). [CrossRef] [PubMed]
  15. D. J. Advena, V. T. Bly, and J. T. Cox, “Deposition and characterization of far-infrared absorbing gold black films,” Appl. Opt. 32, 1136–1144 (1993). [CrossRef] [PubMed]
  16. D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002). [CrossRef]
  17. J. R. J. Phelan and A. R. Cook, “Electrically calibrated pyroelectric optical-radiation detector,” Appl. Opt. 12, 2494–2500(1973). [CrossRef] [PubMed]
  18. J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon 49, 2581–2602 (2011). [CrossRef]
  19. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Nanotubes (Imperial College Press, 1998). [CrossRef]
  20. K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, “Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance,” J. Appl. Phys. 105, 093106 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited