Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator

Not Accessible

Your library or personal account may give you access

Abstract

Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230fs, which is caused by the spatial–temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Near-diffraction-limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators

Haotong Ma, Pu Zhou, Xiaolin Wang, Yanxing Ma, Fengjie Xi, Xiaojun Xu, and Zejin Liu
Opt. Express 18(8) 8251-8260 (2010)

Adaptive conversion of multimode beam to near-diffraction-limited flattop beam based on dual-phase-only liquid-crystal spatial light modulators

Haotong Ma, Haichuan Zhao, Pu Zhou, Xiaolin Wang, Yanxing Ma, Xiaojun Xu, and Zejin Liu
Opt. Express 18(26) 27723-27730 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.