OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 24 — Aug. 20, 2011
  • pp: 4728–4732

Polarization and spin angular momentum in periodically rocking superlattice

Linghao Tian, Kun Liu, and Xianfeng Chen  »View Author Affiliations

Applied Optics, Vol. 50, Issue 24, pp. 4728-4732 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The evolution of polarization and spin angular momentum (SAM) in periodically rocking superlattices (PRS) is investigated. Unlike in the birefringent crystal, they exhibit unusual properties. The evolution of polarization shows many remarkable trajectories and the SAM oscillates inside the PRS. The results may find applications in polarization-state or optical SAM control.

© 2011 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(260.5430) Physical optics : Polarization

ToC Category:
Nonlinear Optics

Original Manuscript: March 16, 2011
Revised Manuscript: July 3, 2011
Manuscript Accepted: July 5, 2011
Published: August 11, 2011

Linghao Tian, Kun Liu, and Xianfeng Chen, "Polarization and spin angular momentum in periodically rocking superlattice," Appl. Opt. 50, 4728-4732 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Jonsson and C. Flytzanis, “Polarization state controlled multistability of a nonlinear magneto-optic cavity,” Phys. Rev. Lett. 82, 1426–1429 (1999). [CrossRef]
  2. A. Kavokin, G. Malpuech, and M. Glazov, “Optical spin Hall effect,” Phys. Rev. Lett. 95, 136601 (2005). [CrossRef] [PubMed]
  3. C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007). [CrossRef]
  4. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]
  5. L. X. ChenG. L. Zheng, J. Xu, B. Z. Zhang, and W. L. She, “Electrically controlled transfer of spin angular momentum of light in an optically active medium,” Opt. Lett. 31, 3474–3476 (2006). [CrossRef] [PubMed]
  6. L. X. Chen, G. L. Zheng, and W. L. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A 75, 061403 (2007). [CrossRef]
  7. L. X. Chen and W. L. She, “Electro-optically forbidden or enhanced spin-to-orbital angular momentum conversion in a focused light beam,” Opt. Lett. 33, 696–698 (2008). [CrossRef] [PubMed]
  8. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Erratum: optical alignment and spinning of laser-trapped microscopic particles,” Nature 395, 621 (1998). [CrossRef]
  9. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  10. B. Piccirillo, C. Toscano, F. Vetrano, and E. Santamato, “Orbital and spin photon angular momentum transfer in liquid crystals,” Phys. Rev. Lett. 86, 2285–2288 (2001). [CrossRef] [PubMed]
  11. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998). [CrossRef]
  12. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  13. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997). [CrossRef]
  14. Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003). [CrossRef] [PubMed]
  15. X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117(2003). [CrossRef] [PubMed]
  16. K. Liu, J. H. Shi, Z. E. Zhou, and X. F. Chen, “Electro-optic Solc-type flat-top bandpass filter based on periodically poled lithium niobate,” Opt. Commun. 282, 1207–1211(2009). [CrossRef]
  17. K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34, 1051–1053 (2009). [CrossRef] [PubMed]
  18. K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009). [CrossRef]
  19. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  20. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721(2000). [CrossRef]
  21. R. Ulrich, “Representation of codirectional coupled waves,” Opt. Lett. 1, 109–111 (1977). [CrossRef] [PubMed]
  22. H. G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett. 11, 33–35 (1986). [CrossRef] [PubMed]
  23. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  24. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, no, in congruente lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited