OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 24 — Aug. 20, 2011
  • pp: 4755–4764

Performance assessment of onboard and scene-based methods for Airborne Prism Experiment spectral characterization

Petra D’Odorico, Luis Guanter, Michael E. Schaepman, and Daniel Schläpfer  »View Author Affiliations

Applied Optics, Vol. 50, Issue 24, pp. 4755-4764 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Accurate spectral calibration of airborne and spaceborne imaging spectrometers is essential for proper preprocessing and scientific exploitation of high spectral resolution measurements of the land and atmosphere. A systematic performance assessment of onboard and scene-based methods for in-flight monitoring of instrument spectral calibration is presented for the first time in this paper. Onboard and ground imaging data were collected at several flight altitudes using the Airborne Prism Experiment (APEX) imaging spectrometer. APEX is equipped with an in-flight characterization (IFC) facility allowing the evaluation of radiometric, spectral, and geometric system properties, both in-flight and on-ground for the full field of view. Atmospheric and onboard filter spectral features present in at-sensor radiances are compared with the same features in reference transmittances convolved to varying instrument spectral configurations. A spectrum-matching algorithm, taking advantage of the high sensitivity of measurements around sharp spectral features toward spectrometer spectral performance, is used to retrieve channel center wavelength and bandwidth parameters. Results showed good agreement between spectral parameters estimated using onboard IFC and ground imaging data. The average difference between estimates obtained using the O 2 and H 2 O features and those obtained using the corresponding filter features amounted to about 0.3 nm (0.05 of a spectral pixel). A deviation from the nominal laboratory instrument spectral calibration and an altitude-dependent performance was additionally identified. The relatively good agreement between estimates obtained by the two approaches in similar spectral windows suggests they can be used in a complementary fashion: while the method relying on atmospheric features can be applied without the need for dedicated calibration acquisitions, the IFC allows assessment at user-selectable wavelength positions by custom filters as well as for the system on-ground.

© 2011 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Remote Sensing and Sensors

Original Manuscript: February 4, 2011
Revised Manuscript: May 23, 2011
Manuscript Accepted: July 17, 2011
Published: August 12, 2011

Petra D’Odorico, Luis Guanter, Michael E. Schaepman, and Daniel Schläpfer, "Performance assessment of onboard and scene-based methods for Airborne Prism Experiment spectral characterization," Appl. Opt. 50, 4755-4764 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Schaepman, “Imaging spectrometers,” in The SAGE Handbook of Remote Sensing, T.A.Warner, M.D.Nellis, and G.Foody (eds.) (SAGE, 2009), pp. 166–178.
  2. M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009). [CrossRef]
  3. R. Green, “Spectral calibration requirements for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt. 37, 683–690 (1998). [CrossRef]
  4. B. C. Gao, M. Montes, and C. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004). [CrossRef]
  5. R. A. Neville, L. Sun, and K. Staenz, “Spectral calibration of imaging spectrometers by atmospheric absorption feature matching,” Can. J. Remote Sens. 34, 29–42 (2008). [CrossRef]
  6. B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009). [CrossRef]
  7. F. C. Seidel, A. A. Kokhanovsky, and M. E. Schaepman, “Fast and simple model for atmospheric radiative transfer,” Atmos. Meas. Tech. 3, 1129–1141 (2010). [CrossRef]
  8. R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49, 1772–1780 (2011). [CrossRef]
  9. L. Guanter, R. Richter, and J. Moreno, “Spectral calibration of hyperspectral imagery using atmospheric absorption features,” Appl. Opt. 45, 2360–2370 (2006). [CrossRef] [PubMed]
  10. J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008). [CrossRef]
  11. Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41, 1223–1231(2003). [CrossRef]
  12. A. Rodger, “SODA: A new method of in-scene atmospheric water vapor estimation and post-flight spectral recalibration for hyperspectral sensors: Application to the HyMap sensor at two locations,” Remote Sens. Environ. 115, 536–547 (2011). [CrossRef]
  13. S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007). [CrossRef]
  14. H. Montgomery, N. Che, K. Parker, and J. Bowser, “The algorithm for MODIS wavelength on-orbit calibration using the SRCA,” IEEE Trans. Geosci. Remote Sens. 38, 877–884(2000). [CrossRef]
  15. P. S. Barry, J. Shepanski, and C. Segal, “Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system,” Proc. SPIE 4480, 231–235 (2002). [CrossRef]
  16. T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.
  17. P. D’Odorico, E. Alberti, and M. Schaepman, “In-flight spectral performance monitoring of the Airborne Prism Experiment,” Appl. Opt. 49, 3082–3091 (2010). [CrossRef] [PubMed]
  18. B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.
  19. R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998). [CrossRef]
  20. S. Thiemann, P. Strobl, P. Gege, N. Stahl, W. Mooshuber, and H. van der Piepen, “Das abbildende spektrometer ROSIS,” in Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, E.Seyfert (ed.) (DLR, 2001), pp. 147–153.
  21. R. O. Green, “Determination of the in-flight spectral calibration of AVIRIS using atmospheric absorption features,” in Proceedings of the Fifth Annual JPL Airborne Earth Science Workshop, Vol.  1, R.O.Green, ed. (Jet Prop. Lab., 1995), pp. 71–74.
  22. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005). [CrossRef]
  23. L. S. Rothman, I. E. Gordon, and A. Barbe, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  24. L. Guanter, R. Richter, and H. Kaufmann, “On the application of the MODTRAN 4 atmospheric radiative transfer code to optical remote sensing,” Int. J. Remote Sens. 30, 1407–1424(2009). [CrossRef]
  25. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147(1998). [CrossRef]
  26. L. Guanter, K. Segl, B. Sang, L. Alonso, H. Kaufmann, and J. Moreno, “Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers,” Opt. Express 17, 11594–11606 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited