OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 24 — Aug. 20, 2011
  • pp: 4765–4768

Optimal proportional relation between laser power and pulse number for the fabrication of surface-microstructured silicon

Yan Peng, Ya Wen, DongSheng Zhang, ShiDa Luo, Lin Chen, and YiMing Zhu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 24, pp. 4765-4768 (2011)
http://dx.doi.org/10.1364/AO.50.004765


View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate that, under the same laser fluence, there exists an optimal proportional relation between the laser power and pulse number for the fabrication of surface-microstructured silicon. During this fabrication process, the pulse number represents the interaction time between the laser and the silicon, which determines the depth of energy transferred into the inner part of the material, while the laser power determines the ablation and volatilization rate of the silicon. The proper combination of laser power and pulse number can ablate the material on the silicon surface effectively and have enough time to transfer the energy into the deep layer, which can produce microstructured silicon with a high spike. In addition, we compare the absorptance of samples etched by different combinations of laser power and pulse number; the corresponding results further prove the existence of an optimal proportional relation.

© 2011 Optical Society of America

OCIS Codes
(160.5140) Materials : Photoconductive materials
(300.1030) Spectroscopy : Absorption

ToC Category:
Materials

History
Original Manuscript: June 16, 2011
Revised Manuscript: July 3, 2011
Manuscript Accepted: July 12, 2011
Published: August 15, 2011

Citation
Yan Peng, Ya Wen, DongSheng Zhang, ShiDa Luo, Lin Chen, and YiMing Zhu, "Optimal proportional relation between laser power and pulse number for the fabrication of surface-microstructured silicon," Appl. Opt. 50, 4765-4768 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-24-4765


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998). [CrossRef]
  2. M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006). [CrossRef]
  3. A. Serpengüzel, A. Kurt, I. Inanç, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” J. Nanophoton. 2, 021770(2008). [CrossRef]
  4. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003). [CrossRef]
  5. H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009). [CrossRef]
  6. P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106(2008). [CrossRef]
  7. Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006). [CrossRef]
  8. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009). [CrossRef]
  9. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641(2004). [CrossRef]
  10. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004). [CrossRef]
  11. J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006). [CrossRef]
  12. J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000). [CrossRef]
  13. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005). [CrossRef]
  14. B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31, 626–633 (2006). [CrossRef]
  15. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited