OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: 4942–4956

Adaptive frequency comb illumination for interferometry in the case of nested two-beam cavities

Irina Harder, Gerd Leuchs, Klaus Mantel, and Johannes Schwider  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. 4942-4956 (2011)
http://dx.doi.org/10.1364/AO.50.004942


View Full Text Article

Enhanced HTML    Acrobat PDF (1838 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The homogeneity test of glass plates in a Fizeau interferometer is hampered by the superposition of multiple interference signals coming from the surfaces of the glass plate as well as the empty Fizeau cavity. To evaluate interferograms resulting from such nested cavities, various approaches such as the use of broadband light sources have been applied. In this paper, we propose an adaptive frequency comb interferometer to accomplish the cavity selection. An adjustable Fabry–Perot resonator is used to generate a variable frequency comb that can be matched to the length of the desired cavity. Owing to its flexibility, the number of measurements needed for the homogeneity test can be reduced to four. Furthermore, compared to approaches using a two-beam interferometer as a filter for the broadband light source, the visibility of the fringe system is considerably higher if a Fabry–Perot filter is applied.

© 2011 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 1, 2011
Manuscript Accepted: July 1, 2011
Published: August 24, 2011

Citation
Irina Harder, Gerd Leuchs, Klaus Mantel, and Johannes Schwider, "Adaptive frequency comb illumination for interferometry in the case of nested two-beam cavities," Appl. Opt. 50, 4942-4956 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-4942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Schulz and J. Schwider, “Interferometric testing of smooth surfaces,” Prog. Opt. 13, 93–167 (1976). [CrossRef]
  2. J. Schwider, R. Burow, K.-E. Elssner, R. Spolaczyk, and J. Grzanna, “Homogeneity testing by phase sampling interferometry,” Appl. Opt. 24, 3059–3061 (1985). [CrossRef] [PubMed]
  3. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  4. Any interference filter, be it a two-beam or a multibeam interferometer with a finite resonator length, will produce a channelled spectrum or a frequency comb. This is also true for a pulse train produced by a femtosecond laser. For the outcome of a correlation experiment of second order like an interferometric experiment, there is no basic difference between a comb filtered out of a continuum and a comb corresponding to a pulse train on the time axis.
  5. J. R. Benoit, C. Fabry, and A. Perot, “Nouvelle determination du rapport des longueurs d’onde fondamentales avec l’unite metrique,” Trav. Mem. Bur. Int. Poids Mes. 15, 1–134 (1913).
  6. R. Patten, “Michelson interferometer as a remote gauge,” Appl. Opt. 10, 2717–2721 (1971). [CrossRef] [PubMed]
  7. C. Froehly, A. Lacourt, and J. Vienot, “Notions de reponse impulsionelle et de function de transfert temporelles de pupilles optiques, justifications experimentelles et applications,” Nouv. Rev. Opt. 4, 183–196 (1973). [CrossRef]
  8. B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, “Low coherence vibration insensitive Fizeau interferometer,” Proc. SPIE 6292, 62920F (2006). [CrossRef]
  9. Ch. Fabry and H. Buisson, “Indications techniques sur les étalons interferentiels à lames argentées,”J. Phys. Theor. Appl. 9, 189–210 (1919). [CrossRef]
  10. C. Fabry, Les Applications des Interferences Lumineuses(Edition Rev. d’Optique, 1923).
  11. M. Cagnet, “Methodes interferometriques utilisant les franges de superposition I,” Rev. Opt. Theor. Instrum. 33, 113–125(1954).
  12. M. Cagnet, “Methodes interferometriques utilisant les franges de superposition II,” Rev. Opt. Theor. Instrum. 33, 229–241(1954).
  13. P. Hariharan, “Digital phase-stepping interferometry: effects of multiply reflected beams,” Appl. Opt. 26, 2506–2507 (1987). [CrossRef] [PubMed]
  14. D. Malacara, Optical Shop Testing (Wiley, 2007). [CrossRef]
  15. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432(1983). [CrossRef] [PubMed]
  16. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619 (1995). [CrossRef] [PubMed]
  17. S. Schulte, B. Dörband, H. Müller, and W. Kähler, “Interferometer system and method for recording an interferogram using weighted averaging over multiple frequencies, and method for providing and manufacturing an object having a target surface,” U.S. patent 7,002,694 (21 February 2006).
  18. P. de Groot, “Measurement of transparent plates with wavelength-tuned phase shifting interferometry,” Appl. Opt. 39, 2658–2663 (2000). [CrossRef]
  19. K. Okada, H. Sakuta, T. Ose, and J. Tsujiuchi, “Separate measurements of surface shapes and refractive index inhomogeneity of an optical element using tunable source phase shifting interferometry,” Appl. Opt. 29, 3280–3285 (1990). [CrossRef] [PubMed]
  20. M. Suematsu and M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique of fringe analysis,” Appl. Opt. 30, 4046–4055 (1991). [CrossRef] [PubMed]
  21. L. Deck, “Fourier-transform phase-shifting interferometry,” Appl. Opt. 42, 2354–2365 (2003). [CrossRef] [PubMed]
  22. D. Battistoni, “FT interferometry measures homogeneity,” Photonics Spectra (2004), http://www.photonics.com/Article.aspx?AID=18379.
  23. A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  24. J. Schwider, “Interferometric homogeneity testing with compensation,” Opt. Commun. 6, 106–110 (1972). [CrossRef]
  25. A. G. Schott, “TIE-26: Homogeneity of optical glass” (July 2004).
  26. P. Hartmann, R. Jedamzik, S. Reichel, and B. Schreder, “Optical glass and glass ceramic historical aspects and recent developments: a Schott view,” Appl. Opt. 49, D157–D176 (2010). [CrossRef]
  27. J. Schwider, “Coarse frequency comb interferometry,” Proc. SPIE 7063, 04.1–04.15 (2008).
  28. J. Schwider, “Multiple beam Fizeau interferometer with frequency comb illumination,” Opt. Commun. 282, 3308–3324(2009). [CrossRef]
  29. J. Schwider, “Informationssteigerung in der Vielstrahlinterferometrie,” Opt. Acta 15, 351–372 (1968). [CrossRef]
  30. G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077–1084 (1967). [CrossRef] [PubMed]
  31. G. Schulz, J. Schwider, C. Hiller, and B. Kicker, “Establishing an optical flatness standard,” Appl. Opt. 10, 929–934(1971). [CrossRef] [PubMed]
  32. J. Schwider, “Superposition fringes as a measuring tool in optical testing,” Appl. Opt. 18, 2364–2367 (1979). [CrossRef] [PubMed]
  33. J. Schwider, “Superposition fringe shear interferometer,” Appl. Opt. 19, 4233–4240 (1980). [CrossRef] [PubMed]
  34. J. Schwider, “White-light Fizeau interferometer,” Appl. Opt. 36, 1433–1437 (1997). [CrossRef] [PubMed]
  35. V. Shidlovski, Superlum Prospect (2004), http://www.superlumdiodes.com.
  36. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006). [CrossRef]
  37. J. Schwider and O. Falkenstorfer, “Twyman-Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975(1995). [CrossRef]
  38. Z. Bor, K. Osvay, B. Racz, and G. Szabo, “Group refractive index measurement Michelson interferometer,” Opt. Commun. 78, 109–112 (1990). [CrossRef]
  39. C. Koliopoulos, “Interferometric optical phase measurement techniques,” Ph.D. thesis (University of Arizona, 1981).
  40. S. Diddams and J.-C. Diels, “Dispersion measurements with white light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129(1996). [CrossRef]
  41. J. Chamberlain, Principles of Interferometric Spectroscopy (Wiley, 1979).
  42. S. Debnath and M. Kothiyal, “Experimental study of the phase-shift miscalibration error in phase-shifting interferometry: use of a spectrally resolved white-light interferometer,” Appl. Opt. 46, 5103–5109 (2007). [CrossRef] [PubMed]
  43. J. V. Ramsay, “A rapid-scanning Fabry–Perot interferometer with automatic parallelism control,” Appl. Opt. 1, 411–413(1962). [CrossRef]
  44. J. H. R. Clarke, M. A. Norman, and F. L. Borsay, “A high performance Fabry–Perot interferometer for Rayleigh and Raman scattering studies,” J. Phys. E 8, 144–146 (1975). [CrossRef]
  45. D. J. Bradley, “Parallel movement for high finesse interferometric scanning,” J. Sci. Instrum. 39, 41–45 (1962). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited