OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: 4989–4997

Simple way of pinpointing the three-dimensional position of biomarkers in fluorescence microscopy using a through-focus exposure method

Koichiro Kishima  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. 4989-4997 (2011)
http://dx.doi.org/10.1364/AO.50.004989


View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The author proposes a method to identify the three-dimensional positions of fluorescent biomarkers by recording just two images. In the proposed method, the x and y positions of all fluorescent markers are recorded in the first exposure, and the z positions are obtained from a blurred image in the second exposure. The author has verified this method using a specimen with 1 μm deep grooves and applied it to measuring chromatic aberration and the separation between two biological probes in fluorescence in situ hybridization cells. The method offers the advantage of greatly reduced data storage requirements.

© 2011 Optical Society of America

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 28, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: July 7, 2011
Published: August 29, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Koichiro Kishima, "Simple way of pinpointing the three-dimensional position of biomarkers in fluorescence microscopy using a through-focus exposure method," Appl. Opt. 50, 4989-4997 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-4989


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Pinkel, T. Straume, and J. W. Gray, “Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization,” Proc. Natl. Acad. Sci. USA 83, 2934–2938 (1986). [CrossRef] [PubMed]
  2. D. Pinkel, J. Landegent, C. Collins, J. Fuscoe, R. Segraves, J. Lucas, and J. Gray, “Fluorescence in situ hybridization with human chromosome-specific libraries: Detection of trisomy 21 translocations of chromosome 4,” Proc. Natl. Acad. Sci. 85, 9138–9142 (1988). [CrossRef] [PubMed]
  3. T. J. Lynch, D. W. Bell, R. Sordella, S. Gurubhagavatula, R. A. Okimoto, B. W. Brannigan, P. L. Harris, S. M. Haserlat, J. G. Supko, F. G. Haluska, D. N. Louis, D. C. Christiani, J. Settleman, and D. A. Haber, “Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to Gefitinib,” N. Engl. J. Med. 350, 2129–2139(2004). [CrossRef] [PubMed]
  4. M. Uemura, Y. Niwa, N. Kakazu, N. Adachi, and K. Kinoshita, “Chromosomal manipulation by site-specific recombinases and fluorescent protein-based vectors,” PLoS One 5, e9846(2010). [CrossRef] [PubMed]
  5. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782(1994). [CrossRef] [PubMed]
  6. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956(1999). [CrossRef]
  7. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599–1609(2002). [CrossRef]
  8. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006). [CrossRef] [PubMed]
  9. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006). [CrossRef] [PubMed]
  10. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5, 417–423 (2008). [CrossRef] [PubMed]
  11. T. Dertinger, R. Colyer, G. Lyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. 106, 22287–22292(2009). [CrossRef] [PubMed]
  12. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106, 2995–2999 (2009). [CrossRef] [PubMed]
  13. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008). [CrossRef]
  14. C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express 18, 3023–3033 (2010). [CrossRef] [PubMed]
  15. L. Holtzer, T. Meckel, and T. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007). [CrossRef]
  16. P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–883 (2010). [CrossRef] [PubMed]
  17. W. A. Nevin, D. L. Gay, and V. Higgs, “Photoluminescence study of interfacial defects in direct-bonded silicon wafers,” J. Electrochem. Soc. 150, G591–G596 (2003). [CrossRef]
  18. C. Gunn, “CMOS photonics for high-speed interconnects,” Micro. IEEE 26, 58–66 (2005). [CrossRef]
  19. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach–Zehnder modulator,” Opt. Express 13, 3129 (2005). [CrossRef] [PubMed]
  20. T. Indukuri, P. Koonath, and B. Jalali, “Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon,” Appl. Phys. Lett. 88, 121108 (2006). [CrossRef]
  21. K. Kishima, “Analysis of defects in an electric and photonic double-layer substrate made by separation-by-implanted-oxygen three-dimensional sculpting,” Appl. Phys. Lett. 89, 201109 (2006). [CrossRef]
  22. E. R. Dowski, Jr., and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866(1995). [CrossRef] [PubMed]
  23. A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graphics 26, 69-1–69-12 (2007). [CrossRef]
  24. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics 25, 924–934(2006). [CrossRef]
  25. H. Nagahara, S. Kuthirummal, C. Zhou, and S. K. Nayar, “Flexible depth of field photography,” in Proceedings of European Conference on Computer Vision (ECCV) (Springer-Verlag, 2008), pp. 60–73.
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2004).
  27. http://www.abbottmolecular.com/UroVysion_5181.aspx.
  28. http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx?ATCCNum=CCL-171&Template=cellBiology.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited