OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: 4998–5011

Compound prism design principles, I

Nathan Hagen and Tomasz S. Tkaczyk  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. 4998-5011 (2011)
http://dx.doi.org/10.1364/AO.50.004998


View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Prisms have been needlessly neglected as components used in modern optical design. In optical throughput, stray light, flexibility, and in their ability to be used in direct-view geometry, they excel over gratings. Here we show that even their well-known weak dispersion relative to gratings has been overrated by designing doublet and double Amici direct-vision compound prisms that have 14 ° and 23 ° of dispersion across the visible spectrum, equivalent to 800 and 1300 lines / mm gratings. By taking advantage of the multiple degrees of freedom available in a compound prism design, we also show prisms whose angular dispersion shows improved linearity in wavelength. In order to achieve these designs, we exploit the well-behaved nature of prism design space to write customized algorithms that optimize directly in the nonlinear design space. Using these algorithms, we showcase a number of prism designs that illustrate a performance and flexibility that goes beyond what has often been considered possible with prisms.

© 2011 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(230.5480) Optical devices : Prisms
(260.2030) Physical optics : Dispersion
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Optical Devices

History
Original Manuscript: May 26, 2011
Manuscript Accepted: July 5, 2011
Published: August 30, 2011

Citation
Nathan Hagen and Tomasz S. Tkaczyk, "Compound prism design principles, I," Appl. Opt. 50, 4998-5011 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-4998


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. B. Donati, “Intorno alle strie degli spettri stellari [On lines in stellar spectra],” Annali del Reale Museo di Fisica e Storia Naturale di Firenze 1, 1–20 (1866), in Italian.
  2. http://www.owlnet.rice.edu/~tt3/.
  3. G. B. Donati, “Intorno alle strie degli spettri stellari [On lines in stellar spectra],” Nuovo Cimento 15, 292–304 (1862), in Italian. [CrossRef]
  4. G. B. Donati, “Memorie astronomiche,” Mon. Not. R. Astron. Soc. 23, 100–107 (1863).
  5. P. J. C. Janssen, “Note sur trois spectroscopes [Note on three spectroscopes],” C.R. Hebd. Seances Acad. Sci. 55, 576–578 (1862), in French.
  6. J. N. Lockyer, The Spectroscope and its Applications(Macmillan, 1873).
  7. P. A. Secchi, Le Stelle [The Stars] (Dumolard, 1877), in Italian.
  8. J. P. Gassiot, “Description of a train of eleven sulphide-of-carbon prisms arranged for spectrum analysis,” Proc. R. Soc. London 13, 183–185 (1864). [CrossRef]
  9. J. Browning, “Note on the use of compound prisms,” Mon. Not. R. Astron. Soc. 31, 203–205 (1871).
  10. A. S. Herschel, “Direct vision spectroscopes by double internal reflection,” Intellectual Observer 7, 444–447 (1865).
  11. H. Schellen, Spectrum Analysis in its Application to Terrestrial Substances and the Physical Constitution of the Heavenly Bodies (Appleton, 1872), p.82, translated by J. Lassell and C. Lassell.
  12. H. Emsmann, “Ein spectroskop à vision directe mit nur einem prisma [A direct vision spectroscope with a single prism],” Ann. Phys. 150, 636–640 (1873), in German.
  13. F. Fuchs, “Vorschläge zur construction einiger optischer vorichtungen [Proposals for construction of some optical devices],” Z. Instrumentenkd. 1, 326–329(1881), in German.
  14. G. D. Liveing and J. Dewar, “Note on a new form of direct vision spectroscope,” Proc. R. Soc. London 41, 449–452 (1886). [CrossRef]
  15. M. V. R. K. Murty and A. L. Narasimham, “Some new direct vision dispersion prism systems,” Appl. Opt. 9, 859–862(1970). [CrossRef] [PubMed]
  16. P. G. Tait, “On anomalous spectra, and on a simple direct-vision spectroscope,” Proc. R. Soc. Edinburgh 7, 410–414(1872).
  17. N. Hagen and T. S. Tkaczyk, “Compound prism design principles, II: triplet and Janssen prisms,” Appl. Opt. 50, 5012–5022 (2011). [CrossRef]
  18. N. Hagen and T. S. Tkaczyk, “Compound prism design principles, III: linear-in-wavenumber and OCT prisms,” Appl. Opt. 50, 5023–5030 (2011). [CrossRef]
  19. A. Thollon, “Nouveau spectroscope [A new spectroscope],” J. Phys. Theor. Appl. 7, 141–148 (1878), in French. [CrossRef]
  20. A. Thollon, “Théorie du nouveau spectroscope à vision directe [Theory of the new direct vision spectroscope],” C.R. Hebd. Seances Acad. Sci. 86, 595–598 (1878), in French.
  21. A. Riccó, “Combinazioni spettroscopiche a visione diretta [Combinations for direct vision spectroscopy],” Mem. Soc. Astron. Ital. 8, 21–34 (1879), in Italian.
  22. A. Thollon, “Spectroscopes à vision directe et a grande dispersion [Direct vision spectroscopes with large dispersion],” J. Phys. Theor. Appl. 8, 73–77 (1879), in French. [CrossRef]
  23. K. W. Zenger, “Ueber ein neues spectroskop mit gerader durchsicht [On a new direct view spectroscope],” Z. Instrumentenkd. 1, 263–266 (1881), in German.
  24. W. Wernicke, “Neues Flüssigkeitsprisma für Spectralapparate [A new liquid prism for spectroscopes],” Z.Instrumentenkd. 1, 353–357 (1881), in German.
  25. H. J. V. Tyrrell and G. K. T. Conn, “The optical properties of a compound liquid prism suitable for studies of the Raman effect,” J. Opt. Soc. Am. 42, 106–113 (1952). [CrossRef]
  26. C. G. Abbott, J. Fowle, and E. Frederick, “A prism of uniform dispersion,” Astrophys. J. 11, 135–139 (1900). [CrossRef]
  27. N. Ebizuka, H. Yokota, F. Kajino, K. S. Kawabata, M. Iye, and S. Sato, “Novel direct vision prism and Wollaston prism assembly for diffraction limit applications,” Proc. SPIE 7018, 70184S (2008). [CrossRef]
  28. F. Blechinger, B. Harnisch, and B. Kunkel, “Optical concepts for high resolution imaging spectrometers,” Proc. SPIE 2480, 165–179 (1995). [CrossRef]
  29. R. Bittner, Y. Delclaud, G. Cerutti-Maori, and J.-Y. Labandibar, “Spectra apparatus of the concentric type having a Fery prism,” U. S. patent 5,781,290 (14 July 1998).
  30. M. Herzberger and N. R. McClure, “The design of superachromatic lenses,” Appl. Opt. 2, 553–560 (1963). [CrossRef]
  31. R. E. Stephens, “Selection of glasses for three-color achromats,” J. Opt. Soc. Am. 49, 398–401 (1959). [CrossRef]
  32. E. L. Dereniak and T. D. Dereniak, Geometric and Trigonometric Optics (Cambridge University, 2008), pp.347–350. [CrossRef]
  33. V. N. Churilovskii, Raschet Prizmennykh System [The Design of Prism Systems] (Leningrad, 1933), in Russian.
  34. C. G. Wynne, “Atmospheric dispersion in very large telescopes with adaptive optics,” Mon. Not. R. Astron. Soc. 285, 130–134(1997).
  35. R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt. 49, 1886–1899 (2010). [CrossRef] [PubMed]
  36. J. E. Greivenkamp, Field Guide to Geometrical Optics(SPIE, 2004), p. 1. [CrossRef]
  37. R. D. Stigler, “Non-deviating prism with continuously variable dispersion,” U. S. patent 5,610,771 (11 March 1997).
  38. A. K. Brodzik and J. M. Mooney, “Convex projections algorithm for restoration of limited-angle chromotomographic images,” J. Opt. Soc. Am. A 16, 246–257 (1999). [CrossRef]
  39. D. A. LeMaster, “Design and model verification of an infrared chromotomographic imaging system,” Master’s thesis (Air Force Institute of Technology, 2004).
  40. J. M. Mooney, W. S. Ewing, and R. J. Nelson, “Multi-band direct vision prism,” U. S. patent 6,935,757 (30 August 2005).
  41. R. W. Deming, “Chromotomography for a rotating-prism instrument using backprojection, then filtering,” Opt. Lett. 31, 2281–2283 (2006). [CrossRef] [PubMed]
  42. The actual optimization algorithm used in our design code is SciPy’s fmin function, which uses a Nelder–Mead simplex algorithm. Many other algorithms were tested and work equally well, with fmin being the fastest among them.
  43. S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003). [CrossRef]
  44. S. E. Holland, W. F. Kolbe, and C. J. Bebek, “Device design for a 12.3-megapixel, fully depleted, back-illuminated, high-voltage compatible charge-coupled device,” IEEE Trans. Electron Devices 56, 2612–2622 (2009). [CrossRef]
  45. ZEMAX Development Corp., www.zemax.com.
  46. http://www.us.schott.com/advanced_optics/english/our_products/materials/data_tools/.
  47. W. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill Professional, 2007), pp.126–128.
  48. E. N. Goncharenko and G. N. Repinskii, “The design of achromatic wedges,” Sov. J. Opt. Technol. 42, 445–448(1975).
  49. N. V. Sheinis, “Design of a wedge scanner,” Sov. J. Opt. Technol. 43, 473 (1976).
  50. J. Lacoursière, M. Doucet, E. Curatu, M. Savard, S. Verreault, S. Thibault, P. Chevrette, and B. Ricard, “Large-deviation achromatic Risley prisms pointing systems,” Proc. SPIE 4773, 123–131 (2002). [CrossRef]
  51. B. D. Duncan, P. J. Bos, and V. Sergan, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003). [CrossRef]
  52. K. Kim, D. Kim, K. Matsumiya, E. Kobayashi, and T. Dohi, “Wide FOV wedge prism endoscope,” Proc. Annu. Conf. Eng. Med. Biol. 6, 5758–5761 (2005).
  53. P. J. Bos, H. Garcia, and V. Sergan, “Wide-angle achromatic prism beam steering for infrared countermeasures and imaging applications: solving the singularity problem in the two-prism design,” Opt. Eng. 46, 113001 (2007). [CrossRef]
  54. Y.-J. Lin, K.-M. Chen, and S.-T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17, 8651–8656 (2009). [CrossRef] [PubMed]
  55. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999), pp. 452–453.
  56. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32, 3525–3527 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited