OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: 5023–5030

Compound prism design principles, III: linear-in-wavenumber and optical coherence tomography prisms

Nathan Hagen and Tomasz S. Tkaczyk  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. 5023-5030 (2011)
http://dx.doi.org/10.1364/AO.50.005023


View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the work of the first two papers in this series [ Appl. Opt. 50, 4998–5011 (2011)APOPAI0003-6935, Appl. Opt. 50, 5012–5022 (2011)APOPAI0003-6935] to design compound prisms for linear-in-wavenumber dispersion, especially for application in spectral domain optical coherence tomography (OCT). These dispersive prism designs are believed to be the first to meet the requirements of high resolution OCT systems in direct-view geometry, where they can be used to shrink system size, to improve light throughput, to reduce stray light, and to reduce errors resulting from interpolating between wavelength- and wavenumber-sampled domains. We show prism designs that can be used for thermal sources or for wideband superluminescent diodes centered around wavelengths 850, 900, 1300, and 1375 nm .

© 2011 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(110.4500) Imaging systems : Optical coherence tomography
(230.5480) Optical devices : Prisms
(260.2030) Physical optics : Dispersion
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Optical Devices

History
Original Manuscript: May 26, 2011
Manuscript Accepted: July 5, 2011
Published: August 30, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Nathan Hagen and Tomasz S. Tkaczyk, "Compound prism design principles, III: linear-in-wavenumber and optical coherence tomography prisms," Appl. Opt. 50, 5023-5030 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-5023


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Hagen and T. S. Tkaczyk, “Compound prism design principles, I,” Appl. Opt. 50, 4998–5011 (2011). [CrossRef]
  2. N. Hagen and T. S. Tkaczyk, “Compound prism design principles, II: triplet and Janssen prisms,” Appl. Opt. 50, 5012–5022 (2011). [CrossRef]
  3. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24, 1475–1477 (1999). [CrossRef]
  4. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000). [CrossRef]
  5. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32, 3525–3527 (2007). [CrossRef] [PubMed]
  6. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008). [CrossRef] [PubMed]
  7. V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106, 459–465 (2009). [CrossRef]
  8. M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, “Full-range k-domain linearization in spectral-domain optical coherence tomography,” Appl. Opt. 50, 1158–1163 (2011). [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  10. M. A. Popescu, Non-Crystalline Chalcogenides (Springer, 2002).
  11. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000). [CrossRef]
  12. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532(2002). [CrossRef]
  13. B. Laude, A. D. Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002). [CrossRef] [PubMed]
  14. S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003). [CrossRef]
  15. URL: http://www.owlnet.rice.edu/~tt3/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited