OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: 5031–5041

Enhancing finite element-based photoacoustic tomography using total variation minimization

Lei Yao and Huabei Jiang  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. 5031-5041 (2011)
http://dx.doi.org/10.1364/AO.50.005031


View Full Text Article

Enhanced HTML    Acrobat PDF (923 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A total variation minimization (TVM)-based finite element reconstruction algorithm for photoacoustic (PA) tomography is described in this paper. This algorithm is used to enhance the quality of reconstructed PA images with time-domain data. Simulations are conducted where different contrast levels between the target and the background, different noise levels, and different sizes and shapes of the target are studied in a 30 mm diameter circular heterogeneous background. These simulated results show that the quality of the reconstructed images can be improved significantly due to the decreased sensitivity to noise effect when the TVM is included in the reconstruction algorithm. The enhancement is further confirmed using experimental data obtained from several phantom experiments and an in vivo animal experiment.

© 2011 Optical Society of America

OCIS Codes
(100.2980) Image processing : Image enhancement
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Processing

History
Original Manuscript: May 27, 2011
Manuscript Accepted: July 25, 2011
Published: August 30, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Lei Yao and Huabei Jiang, "Enhancing finite element-based photoacoustic tomography using total variation minimization," Appl. Opt. 50, 5031-5041 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-5031


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Paltauf, J. Viator, S. Prahl, and S. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112, 1536–1544 (2002). [CrossRef] [PubMed]
  2. S. J. Norton and T. Vo-Dinh, “Optoacoustic diffraction tomography: analysis of algorithms,” J. Opt. Soc. Am. A 20, 1859–1866 (2003). [CrossRef]
  3. A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001). [CrossRef]
  4. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogenous media,” Appl. Phys. Lett. 88, 231101 (2006). [CrossRef]
  5. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32, 2556–2558 (2007). [CrossRef] [PubMed]
  6. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878–888(2006). [CrossRef]
  7. L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time-domain,” J. Opt. A 11, 085301 (2009). [CrossRef]
  8. K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using finite element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995). [CrossRef] [PubMed]
  9. S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G.J.Mueller, B.Chance, R.R.Alfano, S.B.Arridge, J.Beuthen, E.Gratton, M.Kaschke, B.R.Masters, S.Svanberg, and P.van der Zee, eds., SPIE Institute Series (SPIE, 1993), Vol.  IS11, pp. 35–64.
  10. D. C. Dobson and F. Santosa, “An image-enhancement technique for electrical impedance tomography,” Inverse Probl. 10, 317–334 (1994). [CrossRef]
  11. P. M. van den Berg and R. E. Kleinmann, “A total variation enhanced modified gradient algorithm for profile reconstruction,” Inverse Probl. 11, L5–L10 (1995). [CrossRef]
  12. C. R. Vogel and M. E. Oman, “Iterative methods for total variation denoising,” SIAM J. Sci. Comput. 17, 227–238(1996). [CrossRef]
  13. D. C. Dobson and F. Santosa, “Recovery of blocky images from noisy and blurred data,” SIAM J. Appl. Math. 56, 1181–1198(1996). [CrossRef]
  14. D. C. Dobson, “Exploiting ill-posedness in the design of diffractive optical structures,” Proc. SPIE 1919, 248–257(1993). [CrossRef]
  15. R. Acar and C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Probl. 10, 1217–1229 (1994). [CrossRef]
  16. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996). [CrossRef] [PubMed]
  17. K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE 7899, 78993U (2011). [CrossRef]
  18. J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28, 585–594 (2009). [CrossRef] [PubMed]
  19. Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010). [CrossRef] [PubMed]
  20. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58381–430 (1986) [CrossRef]
  21. A. Bayliss and E. Turkel, “Radiation boundary conditions for wave-like equations,” Commun. Pure Appl. Math. 33, 707–725 (1980). [CrossRef]
  22. I. M. Smith and D. V. Griffiths, Programming the Finite Element Method (Wiley, 2004).
  23. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method: Its Basis and Fundamentals (Butterworth, 2005).
  24. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithm,” Physica D 60, 259–268 (1992). [CrossRef]
  25. S. R. Arridge, P. van der Zee, M. Cope, and D. Delpy, “Reconstruction methods for infrared absorption imaging,” Proc. SPIE 1431, 204–215 (1991). [CrossRef]
  26. Z. Wang and A. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002). [CrossRef]
  27. N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000). [CrossRef]
  28. Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited