OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E102–E107

Dispersion and nonlinearity properties of a chalcogenide As 2 Se 3 suspended core fiber

K. M. Mohsin, M. Shah Alam, Dihan Md.Nuruddin Hasan, and Muhammad Nazmul Hossain  »View Author Affiliations

Applied Optics, Vol. 50, Issue 25, pp. E102-E107 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A highly nonlinear suspended core fiber (SCF) has been proposed, where a geometrical design parameter called suspension factor (SF) has been used for dispersion tailoring in the infrared region ( 1.2 μm to 2.8 μm ). We have investigated the effect of different suspended conditions of the SCF core on group velocity dispersion, fiber nonlinearity, and power distributions. Peak effective nonlinearity ( 500 W 1 m 1 at 1200 nm with eight air holes) can be varied significantly with SF. The effect of SF on tailoring the zero dispersion wavelengths has been observed. The SF can also be utilized to control mode overlap between core mode and air hole mode for different sensing applications.

© 2011 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(230.4320) Optical devices : Nonlinear optical devices

Original Manuscript: March 17, 2011
Revised Manuscript: July 20, 2011
Manuscript Accepted: July 20, 2011
Published: August 8, 2011

K. M. Mohsin, M. Shah Alam, Dihan Md. Nuruddin Hasan, and Muhammad Nazmul Hossain, "Dispersion and nonlinearity properties of a chalcogenide As2Se3suspended core fiber," Appl. Opt. 50, E102-E107 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009). [CrossRef]
  2. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010). [CrossRef] [PubMed]
  3. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16, 19629–19642 (2008). [CrossRef] [PubMed]
  4. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1 μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006). [CrossRef]
  5. M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21, 884–886 (2009). [CrossRef]
  6. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007). [CrossRef] [PubMed]
  7. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007). [CrossRef]
  8. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008). [CrossRef]
  9. E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010). [CrossRef]
  10. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010). [CrossRef] [PubMed]
  11. A. I. Konyukhov, E. A. Romanova, and V. S. Shiryaev, “Chalcogenide glasses as a medium for controlling ultrashort IR pulses: Part I,” Opt. Spectrosc. 110, 442–448 (2011). [CrossRef]
  12. L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16, 16423–16430(2008). [CrossRef] [PubMed]
  13. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001). [CrossRef]
  14. G. Farin, Curves and Surfaces for Computer-Aided Geometric Design, 4th ed. (Elsevier, 1997).
  15. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17, 2646–2657 (2009). [CrossRef] [PubMed]
  16. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). [CrossRef] [PubMed]
  17. T. Monro, S. Afshar, H. Ebendorff-Heidepriem, W. Q. Zhang, and Y. Ruan, “Emerging optical fibers: new fiber materials and structures,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFH2.
  18. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010). [CrossRef] [PubMed]
  19. H. Ebendorff-Heidepriem and T. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007). [CrossRef] [PubMed]
  20. K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.
  21. COMSOL Multiphysics, Version 3.2, 2005.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited