OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E138–E144

Study of localized surface-plasmon-resonance-based optical fiber sensor

Rani Dutta, Reshma Bharadwaj, Soumyo Mukherji, and Tapanendu Kundu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. E138-E144 (2011)
http://dx.doi.org/10.1364/AO.50.00E138


View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A U-bent fiber-optic sensor based on the localized surface plasmon resonance (LSPR) of spherical silver nanoparticles has been studied. The redshift of the absorption maximum of the bound silver nanoparticles was observed due to the increment of nanoparticle density on the surface of the fiber. On the other hand, the blueshift was observed when the refractive index of the environment surrounding the nanoparticle was increased. These observations were analyzed in terms of a single nanoparticle theoretical framework. The departure from the spherical symmetry of the nanoparticle is attributed to the plasmonic coupling effect between the randomly distributed nanoparticles on the surface of the fiber core. This phenomenon can be cleverly exploited to develop different kinds of optical fiber sensors.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6490) Optics at surfaces : Spectroscopy, surface
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

History
Original Manuscript: March 15, 2011
Revised Manuscript: June 30, 2011
Manuscript Accepted: July 8, 2011
Published: August 11, 2011

Citation
Rani Dutta, Reshma Bharadwaj, Soumyo Mukherji, and Tapanendu Kundu, "Study of localized surface-plasmon-resonance-based optical fiber sensor," Appl. Opt. 50, E138-E144 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-E138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77, 338–346(2005). [CrossRef]
  2. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982). [CrossRef]
  3. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008). [CrossRef] [PubMed]
  4. W. Hickel, D. Kamp, and W. Knoll, “Surface–plasmon microscopy,” Nature 339, 186 (1989). [CrossRef]
  5. J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000). [CrossRef] [PubMed]
  6. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006). [CrossRef] [PubMed]
  7. K. A. Willets and R. P. Van Duyne “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007). [CrossRef]
  8. J. Homola and M. Piliarik, Surface Plasmon Resonance (SPR) Sensors (Springer, 2006). [CrossRef]
  9. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15(1999). [CrossRef]
  10. V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010). [CrossRef]
  11. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  12. J. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759(2002). [CrossRef]
  13. C. Burda, X. Chen, R. Narayan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005). [CrossRef] [PubMed]
  14. W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon–polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004). [CrossRef]
  15. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003). [CrossRef]
  16. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  17. C. Murphy, A. M. Gole, S. Hunyadi, and C. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544–7554 (2006). [CrossRef] [PubMed]
  18. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002). [CrossRef] [PubMed]
  19. S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007). [CrossRef]
  20. S. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998). [CrossRef]
  21. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968(2004). [CrossRef]
  22. W. Shi and Z. Ma, “Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix,” Biosens. Bioelectron. 26, 1098–1103(2010). [CrossRef] [PubMed]
  23. L. Manna, D. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2, 382–385 (2003). [CrossRef] [PubMed]
  24. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003). [CrossRef]
  25. P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007). [CrossRef]
  26. M. Danckwerts and L.Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007). [CrossRef] [PubMed]
  27. P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8, 4347–4352 (2008). [CrossRef]
  28. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001). [CrossRef]
  29. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käl, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005). [CrossRef]
  30. V. V. R. Sai, T. Kundu, and S. Mukherji,“Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009). [CrossRef] [PubMed]
  31. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688–703 (2007). [CrossRef]
  32. B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 28, 1629–1639 (1996). [CrossRef]
  33. S. K. Khijwania and B. D. Gupta, “Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe,” Opt. Commun. 175, 135–137(2000). [CrossRef]
  34. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996). [CrossRef]
  35. S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48, 3796–3802 (2009). [CrossRef] [PubMed]
  36. U. Kreibig, “Electronic properties of small silver particle: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1011 (1974). [CrossRef]
  37. C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  38. U. Kreibig, “Kramers Kronig analysis of the optical properties of small silver particles,” Z. Phys. 234, 307–318 (1970). [CrossRef]
  39. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  40. B. Tang, S. Xu, J. An, B. Zhao, and W. Xu, “Photoinduced shape conversion and reconstruction of silver nanoparticle,” J. Phys. Chem. C 113, 7025–7030 (2009). [CrossRef]
  41. A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007). [CrossRef]
  42. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007). [CrossRef]
  43. C. L. Haynes, A. D. McFarland, L.L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003). [CrossRef]
  44. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003). [CrossRef]
  45. H. Portales, N. Pinna, and M. Pileni, “Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method,” J. Phys. Chem. A 113, 4094–4099 (2009). [CrossRef] [PubMed]
  46. A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006). [CrossRef]
  47. T. Makaryan, A. Melikyan, and H. Minassian, “Surface plasmon frequency spectrum in a system of two spherical dielectric coated metallic nanoparticles,” Acta Phys. Pol. A 112, 3–7(2007).
  48. L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003). [CrossRef]
  49. Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067–1071 (2004). [CrossRef]
  50. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000). [CrossRef]
  51. E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114, 3918–3923 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited