OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E184–E188

Optical fiber refractometry based on multimode interference

Orlando Frazão, Susana O. Silva, Jaime Viegas, Luís A. Ferreira, Francisco M. Araújo, and José L. Santos  »View Author Affiliations

Applied Optics, Vol. 50, Issue 25, pp. E184-E188 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents an overview of optical fiber sensors based on multimode interference with a focus on refractometric applications. A specific configuration is presented to measure the refractive index of the surrounding liquid based on the Fresnel reflection in the fiber tip, combined with a simple interrogation technique that uses two fiber Bragg gratings as discrete optical sources, with the measurand information encoded in the relative intensity variation of the reflected signals. A resolution of 1.75 × 10 3 RIU is achieved.

© 2011 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Original Manuscript: March 17, 2011
Revised Manuscript: August 12, 2011
Manuscript Accepted: August 12, 2011
Published: August 19, 2011

Orlando Frazão, Susana O. Silva, Jaime Viegas, Luís A. Ferreira, Francisco M. Araújo, and José L. Santos, "Optical fiber refractometry based on multimode interference," Appl. Opt. 50, E184-E188 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  2. A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003). [CrossRef]
  3. Q. Wang and G. Farrell, “Multimode fiber based edge filter for optical wavelength measurement application,” Microw. Opt. Technol. Lett. 48, 900–902 (2006). [CrossRef]
  4. D. Donlagic and M. Zavrsnik, “Fiber-optic microbend sensor structure,” Opt. Lett. 22, 837–839 (1997). [CrossRef]
  5. Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode–multimode–single mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008). [CrossRef]
  6. X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009). [CrossRef]
  7. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004). [CrossRef]
  8. A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003). [CrossRef]
  9. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006). [CrossRef]
  10. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006). [CrossRef]
  11. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006). [CrossRef] [PubMed]
  12. Q. Wang and G. Farrell, “All-fiber multimode-interference based refractometer sensor: proposal and design,” Opt. Lett. 31, 317–319 (2006). [CrossRef] [PubMed]
  13. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach–Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32, 3074–3076 (2007). [CrossRef] [PubMed]
  14. J. Zhang, Y. Zhang, W. Sun, and L. Yuan, “Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement scheme of temperature and strain,” Meas. Sci. Technol. 20, 065206 (2009). [CrossRef]
  15. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356(2009). [CrossRef]
  16. J. Zhang and S. Peng, “A compact SMS refractometer based on HF corrosion scheme,” presented at the Symposium on Photonics and Optoelectronic (SOPO), Chengdu, China, June 19–21 2010, pp. 1–4.
  17. Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single mode–multimode–single mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011). [CrossRef]
  18. S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854(2011). [CrossRef] [PubMed]
  19. S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011). [CrossRef]
  20. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011). [CrossRef] [PubMed]
  21. Q. Wu, S. B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode–multimode–single-mode fiber structure,” Opt. Lett. 36, 2197–2199 (2011). [CrossRef] [PubMed]
  22. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited