OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E38–E49

Stimulated Brillouin scattering slow light in optical fibers [Invited]

Avi Zadok, Avishay Eyal, and Moshe Tur  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. E38-E49 (2011)
http://dx.doi.org/10.1364/AO.50.000E38


View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stimulated Brillouin scattering (SBS) has become a favorable underlying mechanism in many demonstrations of all-optical variable delay in standard fibers, often referred to as slow and fast light. Over 100 journal papers and numerous conference sessions have been dedicated to SBS slow light since 2005. In this paper, recent research in this area is reviewed. Following a short introduction to the topic, several specific trends in contemporary work are highlighted: the optimization of the SBS pump spectrum for extended slow light delay and reduced pulse distortion; SBS slow light demonstrations in nonstandard, highly nonlinear fibers; applications of SBS slow light to the delay of analog waveforms; and the role of polarization. Finally, a brief concluding perspective is provided.

© 2011 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin

History
Original Manuscript: April 7, 2011
Manuscript Accepted: May 27, 2011
Published: July 1, 2011

Virtual Issues
(2011) Advances in Optics and Photonics

Citation
Avi Zadok, Avishay Eyal, and Moshe Tur, "Stimulated Brillouin scattering slow light in optical fibers [Invited]," Appl. Opt. 50, E38-E49 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-E38


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd and D. J. Gauthier, “Slow and fast light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol  43, pp. 497–530. [CrossRef]
  2. Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009).
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–596 (1999). [CrossRef]
  4. C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef] [PubMed]
  5. P. C. Ku, F. Sedgwich, C. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004). [CrossRef] [PubMed]
  6. H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  7. L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2, 474–481 (2008). [CrossRef]
  8. G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008). [CrossRef]
  9. J. B. Khurgin, “Bandwidth limitation in slow light schemes,” in Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009), pp. 293–320.
  10. J. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005). [CrossRef] [PubMed]
  11. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005). [CrossRef] [PubMed]
  12. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, and A. L. Gaeta, “All-optical, continuously tunable, nanosecond pulse delay using wavelength conversion and fiber dispersion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CTuT1. [PubMed]
  13. M. González Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005). [CrossRef]
  14. K.-Y. Song, M. González Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88(2005). [CrossRef] [PubMed]
  15. K.-Y. Song, M. González Herráez, and L. Thévenaz, “Long optically-controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005). [CrossRef] [PubMed]
  16. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  17. C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Distortion effects on data pulses in a slow light tunable delay line due to stimulated Brillouin scattering in a highly nonlinear fiber,” in Proceedings of ECOC 2005 (European Conference on Optical Communication, 2006), paper Mo 4.5.2.
  18. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  19. L. Thévenaz, “Slow and fast light using stimulated Brillouin scattering: a highly flexible approach,” in Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009), pp. 173–193.
  20. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005). [CrossRef] [PubMed]
  21. K.-Y. Song, M. González Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765(2005). [CrossRef] [PubMed]
  22. M. González Herráez, K.-Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006). [CrossRef] [PubMed]
  23. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, and G. Eisenstein, “On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers,” Opt. Express 14, 5877–5884 (2006). [CrossRef] [PubMed]
  24. A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006). [CrossRef] [PubMed]
  25. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007). [CrossRef]
  26. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14, 12063–12070 (2006). [CrossRef] [PubMed]
  27. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14, 5860–5865(2006). [CrossRef] [PubMed]
  28. C. Jáuregui Misas, P. Petropoulos, and D. J. Richardson, “Slowing of pulses to c/10 with subwatt power levels and low latency using Brillouin amplification in a bismuth-oxide optical fiber,” J. Lightwave Technol. 25, 216–221 (2007). [CrossRef]
  29. G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation,” J. Lightwave Technol. 26, 492–498 (2008). [CrossRef]
  30. S. G. Yang, H. W. Chen, C. Y. Qiu, M. Chen, M. Chen, S. Xie, J. Li, and W. Chen, “Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering,” Opt. Lett. 33, 95–97 (2008). [CrossRef] [PubMed]
  31. K. S. Abedin, G. W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44, 16–17 (2008). [CrossRef]
  32. K. Y. Song, K. S. Abedin, and K. Hotate, “Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering,” Opt. Express 16, 225–230 (2008). [CrossRef] [PubMed]
  33. A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low distortion delay of GHz-wide RF signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007). [CrossRef]
  34. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009). [CrossRef]
  35. J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010). [CrossRef]
  36. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010). [CrossRef] [PubMed]
  37. D. R. Walker, M. Bashkansky, A. Gulian, F. K. Fatemi, and M. Steiner, “Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror,” J. Opt. Soc. Am. B 25, C61–C64 (2008). [CrossRef]
  38. A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009). [CrossRef] [PubMed]
  39. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384(2005). [CrossRef]
  40. A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15, 10397–10407 (2007). [CrossRef] [PubMed]
  41. A. Minardo, R. Bernini, and L. Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866–5876 (2006). [CrossRef] [PubMed]
  42. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007). [CrossRef] [PubMed]
  43. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007). [CrossRef] [PubMed]
  44. Z. Lu, Y. Dong, and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15, 1871–1877 (2007). [CrossRef] [PubMed]
  45. T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032(2008). [CrossRef] [PubMed]
  46. A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008). [CrossRef]
  47. K.-Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007). [CrossRef] [PubMed]
  48. J. B. Khurgin, “Performance limits of delay lines based on optical amplifiers,” Opt. Lett. 31, 948–950 (2006). [CrossRef] [PubMed]
  49. A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007). [CrossRef]
  50. Z. Zhang, X. Zhou, R. Liang, and S. Shi, “Influence of third-order dispersion on delay performance in broadband Brillouin slow light,” J. Opt. Soc. Am. B 26, 2211–2217 (2009). [CrossRef]
  51. L. Yi, Y. Jaouen, W. Hu, Y. Su, and S. Bigo, “Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972–16979 (2007). [CrossRef] [PubMed]
  52. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008). [CrossRef] [PubMed]
  53. E. Cabrera-Granado, O. G. Calderón, S. Melle, and D. J. Gauthier, “Observation of large 10 Gb/s SBS slow light delay with low distortion using an optimized gain profile,” Opt. Express 16, 16032–16042 (2008). [CrossRef] [PubMed]
  54. Y. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19, 687–697(2011). [CrossRef] [PubMed]
  55. S. Chin, M. Gonzalez-Herraez, and L. Thévenaz, “Zero-gain slow & fast light propagation in an optical fiber,” Opt. Express 14, 10684–10692 (2006). [CrossRef] [PubMed]
  56. T. Schneider, M. Junker, and K.-U. Lauterbach, “Time delay enhancement in stimulated-Brillouin-scattering-based slow-light systems,” Opt. Lett. 32, 220–222 (2007). [CrossRef] [PubMed]
  57. T. Schneider, R. Henker, K.-U. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15, 9606–9613 (2007). [CrossRef] [PubMed]
  58. S. Wang, L. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008). [CrossRef] [PubMed]
  59. Z. M. Shi, A. Schweinsberg, J. E. Vornehm Jr., M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A 374, 4071–4074 (2010). [CrossRef]
  60. S. Chin and L. Thévenaz, “Optimized shaping of isolated pulses in Brillouin fiber slow-light systems,” Opt. Lett. 34, 707–709 (2009). [CrossRef] [PubMed]
  61. Z. M. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805(2009). [CrossRef]
  62. B. Zhang, L. Yan, L. Zhang, and A. E. Willner, “Multichannel SBS slow light using spectrally sliced incoherent pumping,” J. Lightwave Technol. 26, 3763–3769 (2008). [CrossRef]
  63. B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007). [CrossRef]
  64. R. Zhang, Y. Zhu, J. Wang, and D. J. Gauthier, “Slow light with a swept-frequency source,” Opt. Express 18, 27263–27269(2010). [CrossRef]
  65. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
  66. A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultrawideband tellurite-based Raman fibre amplifier,” Electron. Lett. 37, 1442–1443 (2001). [CrossRef]
  67. K. S. Abedin, “Stimulated Brillouin scattering in single-mode tellurite glass fiber,” Opt. Express 14, 11766–11772(2006). [CrossRef] [PubMed]
  68. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005). [CrossRef]
  69. P. Lacomme, J.-P. Hardange, J.-C. Marchais, and E. Normant, Air and Spaceborne Radar Systems (William Andrew, 2001).
  70. D. T. K. Tong and M. C. Wu, “Multiwavelength optically controlled phased array antennas,” IEEE Trans. Microwave Theory Tech. 46, 108–115 (1998). [CrossRef]
  71. M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006). [CrossRef]
  72. O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wideband applications,” IEEE Photon. Technol. Lett. 17, 1076–1078 (2005). [CrossRef]
  73. J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997). [CrossRef]
  74. R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol. 23, 4026–4036(2005). [CrossRef]
  75. S. Sales, F. Ohman, A. Bermejo, J. Mork, and J. Capmany, “Slow and fast light in SOA-EA structures for phased array antennas,” in Proceedings of ECOC 2006 (European Conference on Optical Communication, 2006), paper We.3.61.
  76. L. Gao, S. I. Herriot, and K. H. Wagner, “Sluggish light for radiofrequency true-time-delay applications with a large delay-bandwidth product,” Opt. Lett. 31, 3360–3362 (2006). [CrossRef] [PubMed]
  77. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005). [CrossRef]
  78. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005). [CrossRef] [PubMed]
  79. H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14, 4800–4807 (2006). [CrossRef] [PubMed]
  80. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006). [CrossRef]
  81. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994). [CrossRef]
  82. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008). [CrossRef] [PubMed]
  83. R. C. Jones, “A new calculus for the treatment of optical system,” J. Opt. Soc. Am. 37, 107–110 (1947). [CrossRef]
  84. Polarized Light Fundamentals and Applications, E.Collett, ed. (Marcel Dekker, 1993).
  85. M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989). [CrossRef]
  86. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000). [CrossRef] [PubMed]
  87. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.
  88. M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010). [CrossRef] [PubMed]
  89. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009). [CrossRef] [PubMed]
  90. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counterpropagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008). [CrossRef] [PubMed]
  91. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010). [CrossRef] [PubMed]
  92. R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403–2411 (2007). [CrossRef]
  93. M. Gonzalez Herraez and L. Thévenaz, “Physical limits to broadening compensation in a linear slow light system,” Opt. Express 17, 4732–4739 (2009). [CrossRef] [PubMed]
  94. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007). [CrossRef]
  95. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989). [CrossRef]
  96. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007). [CrossRef] [PubMed]
  97. K.-Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Opt. Express 17, 10344–10349 (2009). [CrossRef] [PubMed]
  98. K.-Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time–domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010). [CrossRef]
  99. A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008). [CrossRef]
  100. L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22, 712–714 (2010). [CrossRef]
  101. A. Zadok, A. Eyal, M. Tur, and L. Thévenaz, “Polarization attributes of stimulated Brillouin scattering slow light in fiber,” Proc. SPIE 7949, 79490A (2011). [CrossRef]
  102. V. P. Kalosha, L. Chen, and X. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14, 12693–12703 (2006). [CrossRef] [PubMed]
  103. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010). [CrossRef]
  104. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999). [CrossRef]
  105. L. Thévenaz, S. Chin, I. Dicaire, J.-C. Beugnot, S. F. Mafang, and M. González Herráez, “Experimental verification of the effect of slow light on molecular absorption,” Proc. SPIE 7503, 75034W (2009). [CrossRef]
  106. Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007). [CrossRef]
  107. Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25, C136–C143 (2008). [CrossRef]
  108. A. Marandi, B. T. Lantz, and R. L. Byer, “Balancing interferometers with slow light elements,” Opt. Lett. 36, 933–935(2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited