OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E80–E85

Evaluation of the performance of high phosphorous with germanium codoped multimode optical fiber for use as a radiation sensor at low dose rates

Sudipta Ghosh, Shyamal Das, Mukul C. Paul, Kamal Dasgupta, Dinesh Bohra, Himat S. Chaudhary, Lalit Panwar, Pradeep K. Bhatnagar, and Shyam Govind Vaijapurkar  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. E80-E85 (2011)
http://dx.doi.org/10.1364/AO.50.000E80


View Full Text Article

Enhanced HTML    Acrobat PDF (619 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a GeO 2 P 2 O 5 -codoped step index multimode (SIMM) fiber having a core diameter of around 50 μm with numerical aperture of around 0.21–0.22. The proposed SIMM fiber shows excellent linear radiation response behavior with sensitivity of around 0.69 0.97 dB / m / 100 rad at a 505 nm wavelength within the dose rate range of 10 100 rad / h , as well as very low recovery at room temperature using a Co 60 gamma radiation source. This enables its practical application in fiber optic personal dosimeters for measurement of low dose gamma radiation.

© 2011 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2290) Fiber optics and optical communications : Fiber materials
(160.2220) Materials : Defect-center materials
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: March 14, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 10, 2011
Published: July 11, 2011

Citation
Sudipta Ghosh, Shyamal Das, Mukul C. Paul, Kamal Dasgupta, Dinesh Bohra, Himat S. Chaudhary, Lalit Panwar, Pradeep K. Bhatnagar, and Shyam Govind Vaijapurkar, "Evaluation of the performance of high phosphorous with germanium codoped multimode optical fiber for use as a radiation sensor at low dose rates," Appl. Opt. 50, E80-E85 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-E80


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors (CRC Press, 1991), Vol.  1.
  2. O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors (CRC Press, 1992), Vol.  2.
  3. K. Chan, H. Ito, and H. Inaba, “An optical fiber based gas sensor for remote adsorption measurement of low level methane gas in the near infrared region,” J. Lightwave Technol. 2, 234–237 (1984). [CrossRef]
  4. C. A. Rowe-Taitt and F. S. Ligler, “Fiber optic biosensors,” in Handbook of Optical Fiber Sensing Technology, J.M.Lopez-Higuera, ed. (Wiley, 2002), pp. 687–700.
  5. A. M. Dietrich, “Measurement of pollutants: chemical species,” Water Environ. Res. 68, 391–406 (1996). [CrossRef]
  6. M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007). [CrossRef]
  7. B. M. Rogina and B. Vojnovic, “Application of optical fiber sensors for radiation dosimetry,” Radiation Meas. 26, 599–602 (1996). [CrossRef]
  8. E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).
  9. D. L. Griscom, “Nature of defects and defect generation in optical glasses,” Proc. SPIE 541, 38–59 (1985).
  10. D. L. Griscom, “The natures of point defects in amorphous silicon dioxide,” in Defects in SiO2 and Related Dielectrics: Science and Technology, G.Pacchioni, L.Skuja, and D.Griscom, eds., NATO Science Series II: Mathematical and Physical Chemistry (Kluwer Academic, 2000), Vol.  2, pp. 117–159.
  11. R. M. Atkins and P. J. Lamaire, “Effects of elevated temperature hydrogen exposure on short wavelength optical losses and defect concentrations in germanosilicate optical fibers,” J. Appl. Phys. 72, 344–348 (1992). [CrossRef]
  12. H. Henschel, M. Korfer, K. Wittenburg, and F. Wulf, “Fiber optics radiation sensing systems for TESLA,” TESLA Report No. 2000-16 (2000).
  13. J. W. Berthold III, “Overview of prototype fiber optic sensors for future application in nuclear environments,” Proc. SPIE 2425, 74–83 (1994). [CrossRef]
  14. P. Jucker, G. Breuzé, F. Berghmans, and M. Decréton, “Radiation tolerant fiber-optic transmission and sensing for use in remote systems in nuclear power plant, dismantling and fusion applications,” in Proceedings of the ANS 6th Topical Meeting on Robotics and Remote Systems (1995), pp. 151–158.
  15. F. Berghmans, O. Deparis, S. Coenen, M. Decréton, and P. Jucker, “Optical fibres in nuclear radiation environments: potential applications—radiation effects—need for standards,” in Trends in Optical Fibre Metrology and Standards, O.D. D.Soares, ed., NATO ASI Series E: Applied Sciences (Kluwer Academic, 1995), Vol.  285, pp. 131–156.
  16. J. K. Partin, “Radiation response of optical fibers in a nuclear reactor,” Proc. SPIE 506, 46–49 (1984).
  17. J. A. Wall, T. J. Loretz, and J. E. Mattison, “Optical fiber composition and radiation hardness,” Proc. SPIE 296, 35–39(1981).
  18. R. H. West, “Choosing a fibre optic for use in a nuclear radiation environment,” Proc. SPIE 404, 9–16 (1984).
  19. P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Experimental study of optical fibers for the application of fiber radiation sensor,” Proc. SPIE 3534, 510–518 (1999). [CrossRef]
  20. P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels,” Radiation Meas. 30, 725–733 (1999). [CrossRef]
  21. P. Liu, X. Bao, K. Brown, and N. Kulkarni, “Gamma-induced attenuation in normal single- and multi-mode, Ge-doped and P-doped optical fibers: a fiber optic dosimeter for low dose levels,” Can. J. Phys. 78, 89–97 (2000). [CrossRef]
  22. E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007). [CrossRef]
  23. M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009). [CrossRef]
  24. S. R. Nagel, J. B. Macchesney, and K. L. Walker, “Review on MCVD process chemistry,” in Optical Fiber Communications, T.Li, ed. (Academic, 1985), Vol.  1, pp. 1–60.
  25. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorous-doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983). [CrossRef]
  26. G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097–6102 (2001). [CrossRef]
  27. M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorous–oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006). [CrossRef]
  28. M. Nofz, R. Stosser, and F. G. Wihsmann, “ESR as a tool to study short range order phenomena in aluminosilicate glasses,” J. Non-Cryst. Solids 129, 249–258 (1991). [CrossRef]
  29. E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71, 133–144(1985). [CrossRef]
  30. G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited