OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 26 — Sep. 10, 2011
  • pp: 5073–5079

Polarizability, volume expansion, and stress contributions to the refractive index change of Cu + - Na + ion exchanged waveguides in glass

Robert Oven  »View Author Affiliations


Applied Optics, Vol. 50, Issue 26, pp. 5073-5079 (2011)
http://dx.doi.org/10.1364/AO.50.005073


View Full Text Article

Enhanced HTML    Acrobat PDF (338 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The refractive index of optical waveguides formed by electric field assisted Cu + - Na + ion exchange in two types of glass is measured. Assuming, as in a previously published work, that the observed refractive index increase is solely due to polarizability changes, the difference in electronic polarizability between Cu + and Na + ions is determined by applying the Lorentz–Lorenz equation to the data. In our work, the concentration of exchanged ions, which is a necessary input to the Lorentz–Lorenz equation, is determined by combining optical data and electrical data obtained during the exchange. Values for the electronic polarizability difference are in agreement with that in the literature. However, when a correction is made, taking into consideration the measured volume expansion and stress in the glass, the calculated electronic polarizability difference is shown to increase by 19%.

© 2011 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.3130) Materials : Integrated optics materials

ToC Category:
Integrated Optics

History
Original Manuscript: April 4, 2011
Revised Manuscript: July 5, 2011
Manuscript Accepted: July 13, 2011
Published: September 5, 2011

Citation
Robert Oven, "Polarizability, volume expansion, and stress contributions to the refractive index change of Cu+-Na+ ion exchanged waveguides in glass," Appl. Opt. 50, 5073-5079 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-26-5073


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Gonella, “Metal nanocluster composite silicate glasses,” Rev. Adv. Mater. Sci. 14, 134–143 (2007).
  2. Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008). [CrossRef]
  3. J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.
  4. A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “Modeling of the index change in K+-Na+ ion-exchanged glass,” Appl. Opt. 30, 674–681 (1991). [CrossRef] [PubMed]
  5. S. Fantone, “Refractive index and spectral models for gradient-index materials,” Appl. Opt. 22, 432–440 (1983). [CrossRef] [PubMed]
  6. F. Gonella, “Characterisation of Cu-Na ion-exchanged glass waveguides,” Appl. Phys. Lett. 69, 314–315 (1996). [CrossRef]
  7. N. Valles-Villarreal, A. Villalobos, and H. Marquez, “Stress in copper doped ion-exchanged waveguides,” J. Lightwave Technol. 17, 606–612 (1999). [CrossRef]
  8. H. Marquez, D. Salazar, A. Villalobos, G. Paez, and J. M. Rincon, “Experimental study of Cu+-Na+ exchanged glass waveguides,” Appl. Opt. 34, 5817–5822 (1995). [CrossRef] [PubMed]
  9. R. Oven, M. Yin, and P. A. Davies, “Characterisation of planar optical waveguides formed by copper-sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys. 37, 2207–2215 (2004). [CrossRef]
  10. J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002). [CrossRef]
  11. F. Gonella, F. Caccavale, A. Quaranta, and A. Sambo, “Copper doped ion-exchanged waveguide characterisation,” J. Mod. Opt. 45, 837–845 (1998). [CrossRef]
  12. F. Gonella, F. Caccavale, L. D. Bogomolova, F. D’Acapito, and A. Quaranta, “Experimental study of copper-alkali ion exchange in glass,” J. Appl. Phys. 83, 1200–1206 (1998). [CrossRef]
  13. T. Findakly and E. Garmire, “Reduction and control of optical-waveguide losses in glass,” Appl. Phys. Lett. 37, 855–856(1980). [CrossRef]
  14. S. Honkanen, H. Tervonen, H. von Bagh, and M. Leppihalme, “Ion exchange process for fabrication of waveguides couplers for fiber optic sensor applications,” J. Appl. Phys. 61, 52–5(1987). [CrossRef]
  15. R. Oven, “Surface expansion of channel waveguides formed by ion exchange in glass,” J. Appl. Phys. 100, 053513 (2006). [CrossRef]
  16. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385–391 (1985). [CrossRef]
  17. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses(Dover, 1997), pp. 277–279.
  18. A. J. H. P. van der Pol and R. E. O. van de Leest, “On the surface chemistry of barium borosilicate glass in aqueous solutions,” Phys. Chem. Glasses 39, 101–107 (1998).
  19. H. Rawson, Properties and Applications of Glass (Elsevier, 1980).
  20. T. Kaneko, “Dilation of glass by field assisted ion exchange,” J. Mat. Sci. Lett. 5, 1011–1012 (1986). [CrossRef]
  21. J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895(1953). [CrossRef]
  22. F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited