OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 27 — Sep. 20, 2011
  • pp: 5243–5255

Performance analysis of a fiber Bragg grating filter-based strain/temperature sensing system based on a modified Gaussian function approximation method

Kuo-Chih Chuang, Chien-Ching Ma, and Chao-Hsiang Wang  »View Author Affiliations


Applied Optics, Vol. 50, Issue 27, pp. 5243-5255 (2011)
http://dx.doi.org/10.1364/AO.50.005243


View Full Text Article

Enhanced HTML    Acrobat PDF (1511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper analyzes the performance of a fiber Bragg grating (FBG) filter-based strain and/or temperature sensing system based on a modified Gaussian function (MGF) approximation method. Instead of using a conventional Gaussian function, we propose the MGF, which can capture the characteristics of the sidelobes of the reflected spectrum, to model the FBG sensor and filter. We experimentally demonstrate that, by considering the contributions of the sidelobes with the MGF approximation method, behaviors of the FBG filter-based FBG displacement and/or temperature sensing system can be predicted more accurately. The predicted behaviors include the saturation, the sensitivity, the sensing range, and the optimal initial Bragg wavelengths of the FBG sensing system.

© 2011 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(130.6010) Integrated optics : Sensors
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 9, 2011
Revised Manuscript: July 26, 2011
Manuscript Accepted: July 26, 2011
Published: September 14, 2011

Citation
Kuo-Chih Chuang, Chien-Ching Ma, and Chao-Hsiang Wang, "Performance analysis of a fiber Bragg grating filter-based strain/temperature sensing system based on a modified Gaussian function approximation method," Appl. Opt. 50, 5243-5255 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-27-5243


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997). [CrossRef]
  2. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997). [CrossRef]
  3. T. Guo, X. G. Qiao, ZA Jia, Q. D. Zhao, and X. Y. Dong, “Simultaneous measurement of temperature and pressure by a single fiber Bragg grating with a broadened reflection spectrum,” Appl. Opt. 45, 2935–2939 (2006). [CrossRef] [PubMed]
  4. K. O. Hill and G. Meltz, “Fiber Bragg grating technology: fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997). [CrossRef]
  5. Y. J. Rao, Z. L. Ran, and C. X. Zhou, “Fiber-optic Fabry-Perot sensors based on a combination of spatial-frequency division multiplexing and wavelength division multiplexing formed by chirped fiber Bragg grating pairs,” Appl. Opt. 45, 5815–5818 (2006). [CrossRef] [PubMed]
  6. S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg grating,” Smart Mater. Struct. 7, 248–256 (1998). [CrossRef]
  7. Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010). [CrossRef]
  8. Q. Wu, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Study of the effect of source signal bandwidth on ratiometric wavelength measurement,” Appl. Opt. 49, 5626–5631(2010). [CrossRef] [PubMed]
  9. K. C. Chuang and C. C. Ma, “Pointwise fiber Bragg grating displacement sensor system for dynamic measurements,” Appl. Opt. 47, 3561–3567 (2008). [CrossRef] [PubMed]
  10. C. C. Ma and K. C. Chuang, “Investigation of the transient behavior of a cantilever using a point-wise fiber Bragg grating displacement sensor system,” Smart Mater. Struct. 17, 065010(2008). [CrossRef]
  11. R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998). [CrossRef]
  12. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225(1996). [CrossRef]
  13. V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648–650 (1997). [CrossRef] [PubMed]
  14. J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002). [CrossRef]
  15. I. C. Song, S. K. Lee, S. H. Jeong, and B. H. Lee, “Absolute strain measurements made with fiber Bragg grating sensors,” Appl. Opt. 43, 1337–1341 (2004). [CrossRef] [PubMed]
  16. S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998). [CrossRef]
  17. S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839–841 (2001). [CrossRef]
  18. K. C. Chuang and C. C. Ma, “Tracking control of a multilayer piezoelectric actuator using a fiber Bragg grating displacement sensor system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2036–2049 (2009). [CrossRef] [PubMed]
  19. K. C. Chuang and C. C. Ma, “Multidimensional dynamic displacement and strain measurement using an intensity demodulation-based fiber Bragg grating sensing system,” J. Lightwave Technol. 28, 1897–1905 (2010). [CrossRef]
  20. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  21. A. S. Paterno, V. Oliveira, T. S. Figueredo, and H. J. Kalinowski, “Multiplexed fiber Bragg grating interrogation system using a modulated fiber Bragg grating and the tunable filter method,” IEEE Sens. J. 6, 1662–1668(2006). [CrossRef]
  22. J. Mora, J. L. Cruz, M. V. Andrés, and R. Duchowicz, “Simple high resolution wavelength monitor based on a fiber Bragg grating,” Appl. Opt. 43, 744–749 (2004). [CrossRef] [PubMed]
  23. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003). [CrossRef]
  24. W. Jin, Y. Zhou, P. K. C. Chan, and H. G. Xu, “A fibre-optic grating sensor for the study of flow-induced vibrations,” Sens. Actuators 79, 36–45 (2000). [CrossRef]
  25. M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited