OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5390–5396

All-optical clock recovery from 40 Gbit / s RZ signal based on microring resonators

Meng Xiong, Yunhong Ding, Qiang Zhang, and Xinliang Zhang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 28, pp. 5390-5396 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (985 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scheme for high-speed clock recovery from return-to-zero (RZ) signal with microring resonators is presented. By using a silicon microring resonator (MRR) for clock extraction and a 3-order nonlinear series-coupled microring resonator (SCMR) for amplitude equalization, clock pulses with amplitude modulation less than 1 dB can be obtained. The proposed scheme is also designed and numerically studied by 3D full vectorial film mode matching method (FMM) and coupled mode theory (CMT). Simulation results show that clock can be recovered at 40 Gbit / s with short rise- and fall- times.

© 2011 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: June 27, 2011
Manuscript Accepted: July 29, 2011
Published: September 22, 2011

Meng Xiong, Yunhong Ding, Qiang Zhang, and Xinliang Zhang, "All-optical clock recovery from 40 Gbit/s RZ signal based on microring resonators," Appl. Opt. 50, 5390-5396 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch based on semiconductor optical amplifier,” Electron. Lett. 37, 509–510 (2001). [CrossRef]
  2. C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39, 1071–1073 (2003). [CrossRef]
  3. D. Ellis, K. Smith, and D. M. Patrick, “All optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323–1324 (1993). [CrossRef]
  4. Z. Y. Hu, K. Nishimura, H. F. Chou, L. Rau, M. Usami, J. E. Bowers, and D. J. Blumenthal, “40 Gbit/s optical packet clock recovery with simultaneous reshaping using a traveling-wave electroabsorption modulator-based ring oscillator,” IEEE Photon. Technol. Lett. 16, 2640–2642 (2004). [CrossRef]
  5. Y. Li, C. Kim, G. Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96 Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003). [CrossRef]
  6. B. Sartorius, C. Bornholdt, S. Bauer, and M. Mohrle, “40 GHz optical clock recovery for application in asynchronous networks,” ECOC’01: 27th European Conference on Optical Communication, 1–6 (2001), pp. 442–443.
  7. X. Zhou, H. H. M. Shalaby, L. Chao, T. H. Cheng, and P. Ye, “A performance analysis of all-optical clock extraction circuit based on stimulated Brillouin scattering,” J. Lightwave Technol. 18, 1453–1466 (2000). [CrossRef]
  8. X. Zhou, C. Lu, P. Shum, H. H. M. Shalaby, T. H. Cheng, and P. D. Ye, “A performance analysis of an all-optical clock extraction circuit based on Fabry-Perot filter,” J. Lightwave Technol. 19, 603–613 (2001). [CrossRef]
  9. G. Contestabile, A. D’Errico, M. Presi, and E. Ciaramella, “40 GHz all-optical clock extraction using a semiconductor-assisted Fabry-Perot filter,” IEEE Photon. Technol. Lett. 16, 2523–2525 (2004). [CrossRef]
  10. M. Spyropoulou, N. Pleros, G. Papadimitriou, and I. Tomkos, “A high-speed multiwavelength clock recovery scheme for optical packets,” IEEE Photon. Technol. Lett. 20, 2147–2149 (2008). [CrossRef]
  11. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000). [CrossRef]
  12. T. Ye, C. S. Yan, Y. Y. Lu, F. F. Liu, and Y. K. Su, “All-optical regenerative NRZ-to-RZ format conversion using coupled ring-resonator optical waveguide,” Opt. Express 16, 15325–15331 (2008). [CrossRef] [PubMed]
  13. L. Ghisa, Y. Dumeige, N. N. Thi Kim, and P. Feron, “Performances of a fully integrated all-optical pulse reshaper based on cascaded coupled nonlinear microring resonators,” J. Lightwave Technol. 25, 2417–2426 (2007). [CrossRef]
  14. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000). [CrossRef]
  15. S. Pereira, P. Chak, and J. E. Sipe, “Gap-soliton switching in short microresonator structures,” J. Opt. Soc. Am. B 19, 2191–2202 (2002). [CrossRef]
  16. X. L. Cai, D. X. Huang, and X. L. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express 14, 11304–11311 (2006). [CrossRef] [PubMed]
  17. Y. H. Ding, X. B. Zhang, X. L. Zhang, and D. X. Huang, “Elastic polarization converter based on dual microring resonators,” IEEE J. Quantum Electron. 45, 1023–1028(2009). [CrossRef]
  18. Y. H. Ding, C. Peucheret, M. H. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Y. Ou, X. L. Zhang, and D. X. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express 18, 21121–21130 (2010). [CrossRef] [PubMed]
  19. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [CrossRef]
  20. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003). [CrossRef] [PubMed]
  21. M. Popovic, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis (MIT, 2008).
  22. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007). [CrossRef] [PubMed]
  23. B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, “Large purely refractive nonlinear index of single crystal P-toluene sulphonate (PTS) at 1600 nm,” Electron. Lett. 30, 447–448 (1994). [CrossRef]
  24. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited