OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5465–5472

Simulation and optimization of polymer-coated microsphere resonators in chemical vapor sensing

Nai Lin, Lan Jiang, Sumei Wang, Qianghua Chen, Hai Xiao, Yongfeng Lu, and Hailung Tsai  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5465-5472 (2011)
http://dx.doi.org/10.1364/AO.50.005465


View Full Text Article

Enhanced HTML    Acrobat PDF (1039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study presents a chemical vapor sensor based on polymer-coated microsphere resonators. A theoretical simulation of the sensor response is performed, and optimization of the polymer layer thickness is investigated. Results show that the sensor exhibits a good linearity and a low detection limit of the refractive index change. Especially at the thermostable thickness of the polymer layer, the refractive index detection limit of the wavelength around 780 nm can be as low as 2 × 10 8 refractive index unit for a spectral resolution of 10 fm , without any temperature control. Because of the good sensing performance and simple manipulation, the proposed sensor is a very promising platform for chemical vapor detections.

© 2011 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.5470) Materials : Polymers
(230.5750) Optical devices : Resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 9, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 27, 2011
Published: September 30, 2011

Citation
Nai Lin, Lan Jiang, Sumei Wang, Qianghua Chen, Hai Xiao, Yongfeng Lu, and Hailung Tsai, "Simulation and optimization of polymer-coated microsphere resonators in chemical vapor sensing," Appl. Opt. 50, 5465-5472 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002). [CrossRef]
  2. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003). [CrossRef] [PubMed]
  3. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  4. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85, 3666–3668(2004). [CrossRef]
  5. T. Ling and L. J. Guo, “A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15, 17424–17432 (2007). [CrossRef] [PubMed]
  6. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006). [CrossRef] [PubMed]
  7. L. J. Guo and T. Ling, “Analysis of the sensing properties of silica microtube resonator sensors,” J. Opt. Soc. Am. B 26, 471–477 (2009). [CrossRef]
  8. M. L. Corodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef]
  9. A. Ksendzov, M. L. Homer, and A. M. Manfreda, “Integrated optics ring-resonator chemical sensor with polymer transduction layer,” Electron. Lett. 40, 63–65 (2004). [CrossRef]
  10. V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by microring resonators,” Sensors 7, 2741–2749 (2007). [CrossRef]
  11. Y. Sun, S. I. Shopova, G. F. Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33, 788–790 (2008). [CrossRef] [PubMed]
  12. Y. Sun and X. Fan, “Analysis of ring resonators for chemical vapor sensor development,” Opt. Express 16, 10254–10267(2008). [CrossRef] [PubMed]
  13. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007). [CrossRef] [PubMed]
  14. L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008). [CrossRef]
  15. B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Cong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010). [CrossRef]
  16. C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010). [CrossRef]
  17. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008). [CrossRef] [PubMed]
  18. R. L. Hightower and C. B. Richardson, “Resonant Mie scattering from a layered sphere,” Appl. Opt. 27, 4850–4855(1988). [CrossRef] [PubMed]
  19. B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17, 704–715 (1999). [CrossRef]
  20. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Quantum Electron. 12, 3–14 (2006). [CrossRef]
  21. I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23, 1434–1442 (2006). [CrossRef]
  22. I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653–659 (2007). [CrossRef]
  23. N. Lin, L. Jiang, S. M. Wang, L. Yuan, H. Xiao, Y. F. Lu, and H. L. Tsai, “Ultrasensitive chemical sensors based on whispering gallery modes in a microsphere coated with zeolite,” Appl. Opt. 49, 6463–6471 (2010). [CrossRef] [PubMed]
  24. S. S. Sarkisov, D. E. Diggs, G. Adamovsky, and M. J. Curley, “Single-arm double-mode double-order planar waveguide interfereometric sensor,” Appl. Opt. 40, 349–359 (2001). [CrossRef]
  25. J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, and D. Haertle, “Fabrication and characterization of whispering gallery mode resonators made of polymer,” Opt. Express 17, 2573–2578 (2009). [CrossRef] [PubMed]
  26. X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited