OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5499–5502

On limb radiance calculations and convergence of relaxation type retrieval algorithms

L. Rezac, A. A. Kutepov, A. G. Feofilov, and J. M. Russell, III  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5499-5502 (2011)
http://dx.doi.org/10.1364/AO.50.005499


View Full Text Article

Enhanced HTML    Acrobat PDF (151 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several approaches to the solution of the radiative transfer equation assume either Curtis–Godson average or linear change of the source function across grid segments. When such solutions are used for calculating limb radiances, the peak radiance response to the source function perturbation at tangent point i is displaced down to the tangent point i + 1 . This effect is explained through a geometric argument. Temperature profile retrievals performed by applying the ratio of signals at level i + 1 for correcting temperature at level i demonstrate dramatic convergence acceleration of the iterative relaxation scheme.

© 2011 Optical Society of America

OCIS Codes
(260.3090) Physical optics : Infrared, far
(280.4991) Remote sensing and sensors : Passive remote sensing
(280.6780) Remote sensing and sensors : Temperature
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 15, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: August 19, 2011
Published: September 30, 2011

Citation
L. Rezac, A. A. Kutepov, A. G. Feofilov, and J. M. Russell, III, "On limb radiance calculations and convergence of relaxation type retrieval algorithms," Appl. Opt. 50, 5499-5502 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5499


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Gille and F. B. House, “On the inversion of limb radiance measurements 1: temperature and thickness,” J. Atmos. Sci. 28, 1427–1442 (1971). [CrossRef]
  2. J. C. Gille and P. L. Bailey, “Inversion of infrared limb emission measurements for temperature and trace gas concentrations,” in International Interactive Workshop on Inversion Methods in Atmospheric Remote Sensing, (Academic, 1977) pp. 195–216.
  3. J. M. Russell III, M. G. Mlynczak, L. L. Gordley, J. Tansock, and R. Esplin, “An overview of the SABER experiment and preliminary calibration results,” Proc. SPIE Int. Soc. Opt. Eng. 3756, 277–288 (1999).
  4. C. J. Mertens, M. G. Mlynczak, M. López-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell III, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO215 μm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001). [CrossRef]
  5. A. A. Kutepov, O. A. Gusev, and V. P Ogibalov, “Solution of the non-LTE problem for molecular gas in planetary atmospheres: Superiority of accelerated lambda iteration,” J. Quant. Spectrosc. Radiat. Transfer 60, 199–220 (1998). [CrossRef]
  6. O. A. Gusev and A. A. Kutepov, “Non-LTE gas in planetary atmospheres,” in Stellar Atmosphere Modeling, I.Hubeny, D.Mihalas, and K. Werner, eds., Vol. 288 in ASP Conference Series (ASP, 2003), pp. 318–331.
  7. O. Gusev, “Non-LTE diagnostics of the infrared observations of the planetary atmosphere,” Ph. D. thesis (Ludwig-Maximilians University, Munchen, 2002).
  8. G. L. Olson and B. P. Kunasz, “Short characteristic solution of the non-LTE line transfer problem by operator perturbation I. The one dimensional planar slab,” J. Quant. Spectrosc. Radiat. Transfer 39, 325–336 (1987). [CrossRef]
  9. D. Mihalas, Stellar Atmospheres (Freeman, 1978).
  10. J. I. Castor, P. G. Dykema, and R. I. Klein, “A new scheme for multidimensional line transfer. II—ETLA method in one dimension with application to iron K-alpha lines,” Astrophys. J. 387, 561–571 (1992). [CrossRef]
  11. E. Griffioen and L. Oikarinen, “LIMBTRAN: A pseudo three-dimensional radiative transfer model for the limb viewing imager OSIRIS on the ODIN satellite,” J. Geophys. Res. 105, 29717–29730 (2000). [CrossRef]
  12. J. M. Russell III and S. R. Drayson, “The inference of atmospheric ozone using satellite horizon measurements in the 1042 cm−1 band,” J. Atmos. Sci. 29, –(1971).
  13. M. Carlotti, “Global-fit approach to the analysis of limb-scanning atmospheric measurements,” Appl. Opt. 27, 3250–3254 (1988). [CrossRef] [PubMed]
  14. O. A. Gusev, M. Kaufmann, K.-U. Grossmann, F. J. Schmidlin, and M. G. Shepherd, “Atmospheric neutral temperature distribution at the mesopause altitude,” J. Atmos. Sol. Terr. Phys. 68, 1684–1697 (2006). [CrossRef]
  15. M. López-Puertas and F. W. Taylor, Non-LTE Radiative Transfer in the Atmosphere (World Scientific, 2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited