OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: F64–F71

Imaging polarimetry of the fogbow: polarization characteristics of white rainbows measured in the high Arctic

Gábor Horváth, Ramón Hegedüs, András Barta, Alexandra Farkas, and Susanne Åkesson  »View Author Affiliations

Applied Optics, Vol. 50, Issue 28, pp. F64-F71 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The knowledge on the optics of fogbows is scarce, and their polarization characteristics have never been measured to our knowledge. To fill this gap we measured the polarization features of 16 fogbows during the Beringia 2005 Arctic polar research expedition by imaging polarimetry in the red, green and blue spectral ranges. We present here the first polarization patterns of the fogbow. In the patterns of the degree of linear polarization p, fogbows and their supernumerary bows are best visible in the red spectral range due to the least dilution of fogbow light by light scattered in air. In the patterns of the angle of polarization α fogbows are practically not discernible because their α-pattern is the same as that of the sky: the direction of polarization is perpendicular to the plane of scattering and is parallel to the arc of the bow, independently of the wavelength. Fogbows and their supernumeraries were best seen in the patterns of the polarized radiance. In these patterns the angular distance δ between the peaks of the primary and the first supernumerary and the angular width σ of the primary bow were determined along different radii from the center of the bow. δ ranged between 6.08 ° and 13.41 ° , while σ changed from 5.25 ° to 19.47 ° . Certain fogbows were relatively homogeneous, meaning small variations of δ and σ along their bows. Other fogbows were heterogeneous, possessing quite variable δ- and σ-values along their bows. This variability could be a consequence of the characteristics of the high Arctic with open waters within the ice shield resulting in the spatiotemporal change of the droplet size within the fog.

© 2011 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(110.5405) Imaging systems : Polarimetric imaging

Original Manuscript: May 25, 2011
Manuscript Accepted: July 26, 2011
Published: September 12, 2011

Gábor Horváth, Ramón Hegedüs, András Barta, Alexandra Farkas, and Susanne Åkesson, "Imaging polarimetry of the fogbow: polarization characteristics of white rainbows measured in the high Arctic," Appl. Opt. 50, F64-F71 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Minnaert, Light and Color in the Open Air (G. Bell and Sons, 1940).
  2. J. V. Dave, “Scattering of visible light by large water spheres,” Appl. Opt. 8, 155–164 (1969). [CrossRef] [PubMed]
  3. R. A. R. Tricker, Introduction to Meteorological Optics(Elsevier, 1970).
  4. R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).
  5. R. L. Lee Jr and A. B. Fraser, The Rainbow Bridge: Rainbows in Art, Myth, and Science (Pennsylvania State University, 2001).
  6. V. Khare and H. M. Nussenzveig, “Theory of the rainbow,” Phys. Rev. Lett. 33, 976–980 (1974). [CrossRef]
  7. S. D. Mobbs, “Theory of the rainbow,” J. Opt. Soc. Am. 69, 1089–1092 (1979). [CrossRef]
  8. H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079(1979). [CrossRef]
  9. K. Sassen, “Angular scattering and rainbow formation in pendant drops,” J. Opt. Soc. Am. 69, 1083–1089 (1979). [CrossRef]
  10. S. D. Gedzelman, “Rainbow brightness,” Appl. Opt. 21, 3032–3037 (1982). [CrossRef] [PubMed]
  11. R. L. Lee, “What are ‘all the colors of the rainbow’?” Appl. Opt. 30, 3401–3407 (1991). [CrossRef] [PubMed]
  12. R. T. Wang and H. C. van de Hulst, “Rainbows: Mie computations and the Airy approximation,” Appl. Opt. 30, 106–117(1991). [CrossRef] [PubMed]
  13. R. L. Lee, “Mie theory, Airy theory, and the natural rainbow,” Appl. Opt. 37, 1506–1519 (1998). [CrossRef]
  14. G. P. Können and J. H. de Boer, “Polarized rainbow,” Appl. Opt. 18, 1961–1965 (1979). [CrossRef] [PubMed]
  15. G. P. Können, Polarized Light in Nature (Cambridge University, 1985).
  16. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988).
  17. A. Barta, G. Horváth, B. Bernáth, and V. B. Meyer-Rochow, “Imaging polarimetry of the rainbow,” Appl. Opt. 42, 399–405(2003). [CrossRef] [PubMed]
  18. G. Horváth and D. Varjú, Polarized Light in Animal Vision—Polarization Patterns in Nature (Springer-Verlag, 2004).
  19. J. Tyndall, “Note on the white rainbow,” Philos. Mag. 17, 148–150 (1884).
  20. J. C. McConnel, “The theory of fog-bows,” Philos. Mag. 29, 453–461 (1890).
  21. K. Lenggenhager, “Ergänzungen zur Entstehung der Regenbogen, inneren Nebenbogen und Nebelbogen,” Arch. Met. Geoph. Biocl. A 31, 147–156 (1982). [CrossRef]
  22. D. K. Lynch and S. N. Futterman, “Ulloa’s observation of the glory, fogbow, and an unidentified phenomenon,” Appl. Opt. 30, 3538–3541 (1991). [CrossRef] [PubMed]
  23. Cowley, “Software IRIS ©,” (2011) http://atoptics.co.uk.
  24. A. F. Hunter, “Rainbows, fogbows and their associated phenomena,” J. R. Astron. Soc. Can. 15, 345–358 (1921).
  25. D. K. Lynch and P. Schwartz, “Rainbows and fogbows,” Appl. Opt. 30, 3415–3420 (1991). [CrossRef] [PubMed]
  26. K. von Bullrich, “Der Beginn der Nebelbildung und seine optische Auswirkung,” Zeitschrift für angewandte Mathematik und Physik 14, 434–441 (1963). [CrossRef]
  27. K. Lenggenhager, “Erklärung der im Vergleich zum Regen- und Nebelbogen umgekehrten Teilpolarisation der Nebelglorien,” Arch. Met. Geoph. Biocl. A 32, 165–172(1983). [CrossRef]
  28. J. Gál, G. Horváth, A. Barta, and R. Wehner, “Polarization of the moonlit clear night sky measured by full-sky imaging polarimetry at full moon: comparison of the polarization of moonlit and sunlit skies,” J. Geophys. Res. 106(D19), 22647–22653 (2001). [CrossRef]
  29. J. Gál, G. Horváth, V. B. Meyer-Rochow, and R. Wehner, “Polarization patterns of the summer sky and its neutral points measured by full-sky imaging polarimetry in Finnish Lapland north of the Arctic Circle,” Proc. R. Soc. A 457, 1385–1399 (2001). [CrossRef]
  30. I. Pomozi, G. Horváth, and R. Wehner, “How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation,” J. Exp. Biol. 204, 2933–2942 (2001). [PubMed]
  31. G. Horváth, A. Barta, J. Gál, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41, 543–559 (2002). [CrossRef] [PubMed]
  32. T. E. W. Schumann, “Theoretical aspects of the size distribution of fog particles,” Q. J. R. Meteorol. Soc. 66, 195–208(1940). [CrossRef]
  33. R. Hegedüs, S. Åkesson, and G. Horváth, “Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies,” J. Opt. Soc. Am. A 24, 2347–2356 (2007). [CrossRef]
  34. R. Hegedüs, S. Åkesson, and G. Horváth, “Anomalous celestial polarization caused by forest fire smoke: Why do some insects become visually disoriented under smoky skies?” Appl. Opt. 46, 2717–2726 (2007). [CrossRef] [PubMed]
  35. R. Hegedüs, S. Åkesson, R. Wehner, and G. Horváth, “Could Vikings have navigated under foggy and cloudy conditions by skylight polarization? On the atmospheric optical prerequisites of polarimetric Viking navigation under foggy and cloudy skies,” Proc. R. Soc. A 463, 1081–1095 (2007). [CrossRef]
  36. R. Hegedüs, S. Åkesson, and G. Horváth, “Polarization of “water-skies” above arctic open waters: how polynyas in the ice-cover can be visually detected from a distance,” J. Opt. Soc. Am. A 24, 132–138 (2007). [CrossRef]
  37. G. Horváth, A. Barta, I. Pomozi, B. Suhai, R. Hegedüs, S. Åkesson, V. B. Meyer-Rochow, and R. Wehner, “On the trail of Vikings with polarized skylight: Experimental study of the atmospheric optical prerequisites allowing polarimetric navigation by Viking seafarers,” Phil. Trans. R. Soc. B 366, 772–782 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited