OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 29 — Oct. 10, 2011
  • pp: 5710–5713

Experimental study of near-field light collection efficiency of aperture fiber probe at near-infrared wavelengths

Nobuhiro Tsumori, Motoki Takahashi, Yoshiki Sakuma, and Toshiharu Saiki  »View Author Affiliations

Applied Optics, Vol. 50, Issue 29, pp. 5710-5713 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examined the near-field collection efficiency of near-infrared radiation for an aperture probe. We used InAs quantum dots as ideal point light sources with emission wavelengths ranging from 1.1 to 1.6 μm . We experimentally investigated the wavelength dependence of the collection efficiency and compared the results with computational simulations that modeled the actual probe structure. The observed degradation in the collection efficiency is attributed to the cutoff characteristics of the gold-clad tapered waveguide, which approaches an ideal conductor at near-infrared wavelengths.

© 2011 Optical Society of America

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: May 11, 2011
Manuscript Accepted: July 22, 2011
Published: October 6, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Nobuhiro Tsumori, Motoki Takahashi, Yoshiki Sakuma, and Toshiharu Saiki, "Experimental study of near-field light collection efficiency of aperture fiber probe at near-infrared wavelengths," Appl. Opt. 50, 5710-5713 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett. 75, 3267–3269 (1999). [CrossRef]
  2. A. Ponchet, A. Le Corre, H. L’haridon, B. Lambert, and S. Salan, “Relationship between self organization and size of InAs islands on InP (001) grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 67, 1850–1852 (1995). [CrossRef]
  3. Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD,” Physica E 26, 81–85 (2005). [CrossRef]
  4. T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005). [CrossRef]
  5. T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, “Single-photon interferography in InAs/InP quantum dots emitting at 1300 nm wavelength,” Appl. Phys. Lett. 91, 223113 (2007). [CrossRef]
  6. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007). [CrossRef]
  7. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, “Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm,” Appl. Phys. Lett. 81, 2291–2293 (2002). [CrossRef]
  8. T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998). [CrossRef]
  9. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003). [CrossRef] [PubMed]
  10. Y. Sugimoto, T. Saiki, and S. Nomura, “Visualization of weak confinement potentials by near-field optical imaging spectroscopy of exciton and biexciton in a single quantum dot,” Appl. Phys. Lett. 93, 083116 (2008). [CrossRef]
  11. Y. Sugimoto, N. Tsumori, T. Saiki, and S. Nomura, “Visualization of space charge field effect on excitons in a GaAs quantum dot by near-field optical wavefunction mapping,” Opt. Rev. 16269–273 (2010). [CrossRef]
  12. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  13. K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005). [CrossRef]
  14. Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005). [CrossRef]
  15. S. Mononobe and M. Ohtsu, “Development of a fiber used for fabricating application oriented near-field optical probes,” IEEE Photon. Technol. Lett. 10, 99–101 (1998). [CrossRef]
  16. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984). [CrossRef]
  17. K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995). [CrossRef]
  18. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited