OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 3 — Jan. 20, 2011
  • pp: 287–290

Effect of photonic bandgap on upconversion emission in YbPO 4 : Er inverse opal photonic crystals

Zhengwen Yang, Kan Zhu, Zhiguo Song, Dacheng Zhou, Zhaoyi Yin, and Jianbei Qiu  »View Author Affiliations

Applied Optics, Vol. 50, Issue 3, pp. 287-290 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (415 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We obtained upconversion (UC) light-emitting photonic materials ( YbPO 4 : Er ) with an inverse opal structure by the self-assembly technique in combination with a solgel method. The effect of the photonic stopband on the UC luminescence of the H 11 / 2 2 , S 3 / 2 4 I 15 / 2 4 , and F 9 / 2 , 4 I 15 / 2 4 transitions of Er 3 + has been observed in the inverse opals of the Er 3 + -doped YbPO 4 . Significant suppression of the UC emission was detected if the photonic bandgap overlapped with the Er 3 + ions emission band, while enhancement of the UC emission occurs if the emission band appears at the edge of the bandgap.

© 2011 Optical Society of America

OCIS Codes
(260.2160) Physical optics : Energy transfer
(260.3800) Physical optics : Luminescence
(230.5298) Optical devices : Photonic crystals

ToC Category:

Original Manuscript: September 27, 2010
Revised Manuscript: December 1, 2010
Manuscript Accepted: December 3, 2010
Published: January 14, 2011

Zhengwen Yang, Kan Zhu, Zhiguo Song, Dacheng Zhou, Zhaoyi Yin, and Jianbei Qiu, "Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals," Appl. Opt. 50, 287-290 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater 14, 271–274(2002). [CrossRef]
  4. R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006). [CrossRef] [PubMed]
  5. O. Painter, R. K. Lee, and A. Scherer, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821(1999). [CrossRef] [PubMed]
  6. P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003). [CrossRef] [PubMed]
  7. Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009). [CrossRef]
  8. J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000). [CrossRef]
  9. R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A. 47, 3380–3384 (1993). [CrossRef] [PubMed]
  10. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A. 50, 1764–1769(1994). [CrossRef] [PubMed]
  11. X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009). [CrossRef]
  12. P. Markowicz, C. Friend, Y. Z. Shen, J. Swiatkiewicz, P. N. Prasad, O. Toader, S. John, and R. W. Boyd, “Enhancement of two-photon emission in photonic crystals,” Opt. Lett. 27, 351–353 (2002). [CrossRef]
  13. Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009). [CrossRef]
  14. F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3985–3900 (2010). [CrossRef]
  15. V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary colloidal crystals,” Adv. Mater. 15, 75–78 (2003). [CrossRef]
  16. A. G. Galstyan, E. M. Raikh, and V. Z. Vardeny, “Emission spectrum of a dipole in a semi-infinite periodic dielectric structure: effect of the boundary,” Phys. Rev. B 62, 1780–1786(2000). [CrossRef]
  17. L. Bechger, P. Lodahl, and L. W. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B. 109, 9980–9988 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited