OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 30 — Oct. 20, 2011
  • pp: 5894–5904

Experimental results from an airborne static Fourier transform imaging spectrometer

Yann Ferrec, Jean Taboury, Hervé Sauer, Pierre Chavel, Pierre Fournet, Christophe Coudrain, Joël Deschamps, and Jérôme Primot  »View Author Affiliations


Applied Optics, Vol. 50, Issue 30, pp. 5894-5904 (2011)
http://dx.doi.org/10.1364/AO.50.005894


View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high étendue static Fourier transform spectral imager has been developed for airborne use. This imaging spectrometer, based on a Michelson interferometer with rooftop mirrors, is compact and robust and benefits from a high collection efficiency. Experimental airborne images were acquired in the visible domain. The processing chain to convert raw images to hyperspectral data is described, and airborne spectral images are presented. These experimental results show that the spectral resolution is close to the one expected, but also that the signal to noise ratio is limited by various phenomena (jitter, elevation fluctuations, and one parasitic image). We discuss the origin of those limitations and suggest solutions to circumvent them.

© 2011 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(100.3175) Image processing : Interferometric imaging
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: July 28, 2011
Revised Manuscript: August 24, 2011
Manuscript Accepted: August 24, 2011
Published: October 18, 2011

Citation
Yann Ferrec, Jean Taboury, Hervé Sauer, Pierre Chavel, Pierre Fournet, Christophe Coudrain, Joël Deschamps, and Jérôme Primot, "Experimental results from an airborne static Fourier transform imaging spectrometer," Appl. Opt. 50, 5894-5904 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-30-5894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Vermande, C. Buil, and F. Delbru, “Interferometric spectro-imager system (ISIS),” Proc. SPIE 810, 117–124 (1987).
  2. D. Cabib, R. A. Buckwald, Y. Garini, and D. G. Soenksen, “Spatially resolved Fourier transform spectroscopy (spectral imaging): a powerful tool for quantitative analytical microscopy,” Proc. SPIE 2678, 278–291 (1996). In this reference, the instrument is not exactly static, since the fringe scrolling is due to a rotation of the whole interferometer, while the scene and the camera are fixed, but this is mainly due to the fact that it was developed for microscopy imaging. [CrossRef]
  3. R. F. Horton, C. A. Conger, and L. S. Pellegrino, “High etendue imaging Fourier transform spectrometer: initial results,” Proc. SPIE 3118, 380–390 (1997). [CrossRef]
  4. Y. Ferrec, J. Taboury, P. Fournet, H. Sauer, F. Goudail, P. Chavel, N. Guérineau, C. Coudrain, S. Thétas, P. Cymbalista, J. Primot, and J. Deschamps, “Design of a Fourier-transform spectral imager for airborne measurements,” in Fourier Transform Spectroscopy/ Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest Series (Optical Society of America, 2007), paper FThB3.
  5. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002). [CrossRef]
  6. P. J. Minnett and R. G. Sellar, “The high efficiency hyperspectral imager—a new instrument for measurements of the Arctic surface,” presented at the 8th Conference on Polar Meteorology and Oceanography of the American Meteorological Society, San Diego, California, 9–13 January 2005, poster P1.2.
  7. D. Cabib, “Performance and examples of measurements of a mid infrared interferometric hyperspectral imager,” Proc. SPIE 7113, 711310 (2008). [CrossRef]
  8. A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, P. Marcoionni, and I. Pippi, “ALISEO on MIOSat: an aerospace imaging interferometer for Earth observation,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing Symposium IGARSS 2009 (IEEE, 2009), pp. 464–467.
  9. P. G. Lucey, K. A. Horton, and T. Williams, “Performance of a long-wave infrared hyperspectral imager using a Sagnac interferometer and an uncooled microbolometer array,” Appl. Opt. 47, F107–F113 (2008). [CrossRef] [PubMed]
  10. X. Ma, J. Yang, W. Qiao, and B. Xue, “An improved Fourier-based sub-pixel image registration algorithm for raw image sequence of LASIS,” in Proc. SPIE 6623, 66230A (2007). [CrossRef]
  11. Y. Ferrec, J. Taboury, P. Fournet, H. Sauer, F. Goudail, P. Chavel, N. Guérineau, C. Coudrain, S. Thétas, P. Cymbalista, J. Primot, and J. Deschamps, “A Fourier transform interferometer for airborne spectral imaging in the visible and near infrared,” presented at International Conference on Optics and Laser Applications in Medicine and Environmental Monitoring for Sustainable Development, Cape Coast, Ghana, 19–24 November 2007, pp. 67–70.
  12. This imaging system is two-dimensional, without an entrance slit as in , hence the name “high étendue Fourier transform spectral imager.” The French word étendue is sometimes translated as throughput.
  13. M. Françon, Optical Interferometry (Academic Press, 1966), pp. 62–86.
  14. P. Hariharan, Optical Interferometry (Academic Press, 1986), pp. 18–24.
  15. P. Jacquinot, “Caractères communs aux nouvelles méthodes de spectroscopie interférentielle; facteur de mérite,” J. Phys. Radium 19, 223–229 (1958). [CrossRef]
  16. G. Fortunato and P. Jacquinot, “Recherche de l’étendue maximale dans les interférometres,” Comptes Rendus de l’Académie des Sciences Paris 274-B, 688–691 (1972).
  17. P. Bouchareine and P. Connes, “Interféromètre à champ compensé pour spectroscopie par transformation de Fourier,” J. Phys. 24, 134–138 (1963).
  18. H. M. Harlander, F. Roesler, J. Cardon, C. Englert, and R. Conway, “Shimmer: a spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere,” Appl. Opt. 41, 1343–1352 (2002). [CrossRef] [PubMed]
  19. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. 44, 1614–1624 (2005). [CrossRef] [PubMed]
  20. K. Itoh, “Interferometric multispectral imaging,” in Prog. Opt. 35, 145–196 (1996). [CrossRef]
  21. A. T. Pritt Jr., P. N. Kupferman, S. J. Young, and R. A. Keller, “Imaging LWIR spectrometers for remote sensing applications,” Proc. SPIE 3063, 138–149 (1997). [CrossRef]
  22. Y. Ferrec and C. Coudrain, “CaHyD experiment on Sethi: a Fourier transform spectral imager in an aircraft pod,” in Proceedings of Optro 2010, 4th International Symposium on Optronics in Defence and Security (Association Aéronautique et Astronautique de France, 2010), paper 1783455.
  23. T. Dohi and T. Suzuki, “Attainment of high resolution holographic Fourier transform spectroscopy,” Appl. Opt. 10, 1137–1140 (1971). [CrossRef] [PubMed]
  24. T. Okamoto, K. Satoshi, and M. Shigeo, “Optical method for resolution enhancement in photodiode array Fourier transform spectroscopy,” Appl. Opt. 24, 4221–4224 (1985). [CrossRef] [PubMed]
  25. Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Compactness of lateral shearing interferometers,” Appl. Opt. 50, 4656–4663(2011). [CrossRef] [PubMed]
  26. Q. Tian and M. Huhns, “Algorithms for subpixel registration,” Comput. Vis. Graph., Image Process. 35, 220–233 (1986). [CrossRef]
  27. H. Foroosh, J. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Trans. Image Process. 11, 188–200 (2002). [CrossRef]
  28. www.ittvis.com.
  29. P. Griffiths and J. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007), pp. 85–88.
  30. We call this noise “jitter noise,” but it should not to be confused with the sampling jitter noise, which describes the error in sampling the optical path differences of a Michelson interferometer with a moving mirror .
  31. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005). [CrossRef]
  32. J.-P. Allard, M. Chamberland, V. Farley, F. Marcotte, M. Rolland, A. Vallières, and A. Villemaire, “Airborne measurements in the longwave infrared using an imaging hyperspectral sensor,” Proc. SPIE 7086, 70860K (2008). [CrossRef]
  33. A. Kattnig and J. Primot, “Model of the second-order statistic of the radiance field of natural scenes, adapted to system conceiving,” Proc. SPIE 3074, 132–141 (1997). [CrossRef]
  34. M. Bryson, M. Johnson-Roberson, and S. Sukkarieh, “Airborne smoothing and mapping using vision and inertial sensors,” in Proceedings of IEEE Conference on Robotics and Automation ICRA ’09 (IEEE, 2009), pp. 2037–2042.
  35. W. H. Smith and P. D. Hammer, “Digital array scanned interferometer: sensors and results,” Appl. Opt. 35, 2902–2909(1996). [CrossRef] [PubMed]
  36. R. Meynart, “Sampling jitter in Fourier-transform spectrometers: spectral broadening and noise effects,” Appl. Opt. 31, 6383–6388 (1992). [CrossRef] [PubMed]
  37. P. Tremblay and M. Chamberland, “Continuous-scan imaging FTS with an integrating camera—contributions of sampling jitter noise to NESR,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThA3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited