OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: 5921–5937

Detailed performance modeling of a pulsed high-power single-frequency Ti:sapphire laser

Gerd Wagner, Volker Wulfmeyer, and Andreas Behrendt  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. 5921-5937 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2084 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Differential absorption lidar (DIAL) is a unique technique for profiling water vapor from the ground up to the lower stratosphere. For accurate measurements, the DIAL laser transmitter has to meet stringent requirements. These include high average power (up to 10 W ) and high single-shot pulse energy, a spectral purity > 99.9 % , a frequency instability < 60 MHz rms , and narrow spectral bandwidth (single-mode, < 160 MHz ). We describe extensive modeling efforts to optimize the resonator design of a Ti:sapphire ring laser in these respects. The simulations were made for the wavelength range of 820 nm , which is optimum for ground-based observations, and for both stable and unstable resonator configurations. The simulator consists of four modules: (1) a thermal module for determining the thermal lensing of the Brewster-cut Ti:sapphire crystal collinear pumped from both ends with a high-power, frequency-doubled Nd:YAG laser; (2) a module for calculating the in-cavity beam propagations for stable and unstable resonators; (3) a performance module for simulating the pumping efficiency and the laser pulse energy; and (4) a spectral module for simulating injection seeding and the spectral properties of the laser radiation including spectral impurity. Both a stable and an unstable Ti:sapphire laser resonator were designed for delivering an average power of 10 W at a pulse repetition frequency of 250 Hz with a pulse length of approximately 40 ns , satisfying all spectral requirements. Although the unstable resonator design is more complex to align and has a higher lasing threshold, it yields similar efficiency and higher spectral purity at higher overall mode volume, which is promising for long-term routine operations.

© 2011 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3590) Lasers and laser optics : Lasers, titanium
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(350.5500) Other areas of optics : Propagation
(350.6830) Other areas of optics : Thermal lensing
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 2, 2011
Revised Manuscript: July 22, 2011
Manuscript Accepted: July 23, 2011
Published: October 25, 2011

Gerd Wagner, Volker Wulfmeyer, and Andreas Behrendt, "Detailed performance modeling of a pulsed high-power single-frequency Ti:sapphire laser," Appl. Opt. 50, 5921-5937 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. V. Browell, T. D. Wilkerson, and T. J. Mcilrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979). [CrossRef] [PubMed]
  2. J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  3. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998). [CrossRef]
  4. A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007). [CrossRef]
  5. A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007). [CrossRef]
  6. R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011). [CrossRef]
  7. S. Ismail, and E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989). [CrossRef] [PubMed]
  8. V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio,”Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005). [CrossRef]
  9. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002). [CrossRef]
  10. D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006). [CrossRef]
  11. D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010). [CrossRef]
  12. V. Wulfmeyer, S. Pal, D. D. Turner, and E. Wagner, “Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?,” Bound.-Lay. Meteorol. 136, 253–284 (2010). [CrossRef]
  13. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320(2001). [CrossRef]
  14. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001). [CrossRef]
  15. A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009). [CrossRef]
  16. P. Ingmann and A. Hélière, “WALES—WAter vapour Lidar Experiment in Space—Report for assessment,” ESA SP-1257(2), (European Space Agency, 2001).
  17. P. Langen and Mission Experts Division, “WALES—WAter vapour Lidar Experiment in Space—Report for Mission Selection,” ESA SP-1279(3), (European Space Agency, 2004).
  18. P. Langen and Mission Experts Division, “WALES—WAter vapour Lidar Experiment in Space—Technical and Programmatic Annex,” Annex to ESA SP-1279(3), (European Space Agency, 2004).
  19. P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008). [CrossRef]
  20. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998). [CrossRef]
  21. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004). [CrossRef] [PubMed]
  22. K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120–5126(2005). [CrossRef] [PubMed]
  23. H. Vogelmann and T. Trickl, “Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station,” Appl. Opt. 47, 2116–2132 (2008). [CrossRef] [PubMed]
  24. LASE Project, “http://asd-www.larc.nasa.gov/lase/ASDlase.html,” (2007).
  25. D. Bruneau, P. Quaglia, C. Flament, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3461 (2001). [CrossRef]
  26. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009). [CrossRef]
  27. V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999). [CrossRef]
  28. V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999). [CrossRef]
  29. H. V. Murphey, R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, “Dryline on 19 June 2002 during IHOP. Part I: airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation,” Mon. Weather Rev. 134, 406–430 (2006). [CrossRef]
  30. R. M. Wakimoto, H. V. Murphey, E. V. Browell, and S. Ismail, “The “triple point” on 24 May 2020 during IHOP. Part I: airborne Doppler and LASE analyses of the frontal boundaries and convection initiation,” Mon. Weather Rev. 134, 231–250(2006). [CrossRef]
  31. J. S. Grabon, K. J. Davis, C. Kiemle, and G. Ehret, “Airborne lidar observations of the transition zone between the convective boundary layer and free atmosphere during the international H2O project (IHOP) in 2002,” Bound.-Lay. Meteorol. 134, 61–83 (2010). [CrossRef]
  32. C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011). [CrossRef]
  33. A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011). [CrossRef]
  34. A. Behrendt, V. Wulfmeyer, G. Wagner, A. Riede, and F. Späth are preparing a manuscript to be called “Measurements with the University of Hohenheim water vapor DIAL during COPS.”
  35. U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011). [CrossRef]
  36. V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011). [CrossRef]
  37. R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004). [CrossRef]
  38. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998). [CrossRef]
  39. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937(1991). [CrossRef] [PubMed]
  40. D. Bruneau, T. Arnaud des Lions, P. Quaglia, and J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950(1994). [CrossRef] [PubMed]
  41. D. Bruneau, P. Quaglia, C. Flament, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462–3475 (2001). [CrossRef]
  42. V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, and S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995). [CrossRef] [PubMed]
  43. V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996). [CrossRef] [PubMed]
  44. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002). [CrossRef]
  45. J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011). [CrossRef]
  46. A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm,” Appl. Phys. B 102, 905–915 (2011). [CrossRef]
  47. A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009). [CrossRef]
  48. M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 1–24 (2010). [CrossRef]
  49. A. Dinovitser, M. W. Hamilton, and R. A. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010). [CrossRef] [PubMed]
  50. G. Wagner, V. Wulfmeyer, and A. Behrendt are preparing a manuscript to be called “The transmitter of a 3D-scanning DIAL system. System description and transmitter performance.”
  51. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  52. S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007). [CrossRef]
  53. F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007). [CrossRef]
  54. Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942 nm,” Opt. Express 18, 6131–6136 (2010). [CrossRef] [PubMed]
  55. A. Petrova-Mayor, and V. Wulfmeyer, “Development of an eye-safe solid-state tunable laser transmitter in the 1.4–1.5 μm wavelength region based on Cr4+:YAG crystal for lidar applications,” Appl. Opt. 47, 1522–1534 (2008). [CrossRef] [PubMed]
  56. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005). [CrossRef] [PubMed]
  57. W. Koechner, “Thermo-optic effects and heat removal,” in Solid-State Laser Engineering, T.Tamir and A.L.Schawlow, eds. (Springer-Verlag1999), Chap. 7.
  58. N. Hodgson and H. Weber, “Resonators with variable internal lenses,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 13.
  59. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  60. G. A. Rines, H. H. Zenzie, and P. F. Moulton, “Recent advantages in Ti:Al2O3 unstable resonator lasers,” in Advanced Solid State Lasers, G.Dube and L.Chase, eds. Vol.  10 of OSA Proceedings Series (Optical Society of America, 1991), paper TL3.
  61. F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005). [CrossRef]
  62. L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystals,” Opt. Lett. 13, 363–365 (1988). [CrossRef] [PubMed]
  63. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963). [CrossRef]
  64. R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998). [CrossRef]
  65. H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993). [CrossRef]
  66. S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002). [CrossRef]
  67. V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006). [CrossRef]
  68. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990). [CrossRef]
  69. G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045–8055 (2005). [CrossRef] [PubMed]
  70. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  71. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  72. J. P. Lörtscher and J. Steffen, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975). [CrossRef]
  73. H. P. Kortz, R. Iffländer, and H. Weber, “Stability and beam divergence of multimode lasers with internal variable lenses,” Appl. Opt. 20, 4124–4134 (1981). [CrossRef] [PubMed]
  74. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986). [CrossRef] [PubMed]
  75. D. MetcalfP. de Giovanni, J. Zachorowski, and M. Leduc, “Laser resonators containing self-focusing elements,” Appl. Opt. 26, 4508–4517 (1987). [CrossRef] [PubMed]
  76. Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).
  77. R. J. Freiberg, P. P. Chenausky, and C. J. Buczek, “Asymmetric unstable traveling-wave resonators,” IEEE J. Quantum Electron. 10, 279–289 (1974). [CrossRef]
  78. M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997). [CrossRef]
  79. Applied Optics Research (AOR), “GLAD: General Laser Analysis and Design program,” Version 5.0.5, www.aor.com.
  80. G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering XI, R.R.Shannon and J.C.Wyant, eds. (Academic, 1992), Chap. 3.
  81. P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986). [CrossRef]
  82. W. R. Rapoport and C. P. Khattak, “Titanium sapphire laser characteristics,” Appl. Opt. 27, 2677–2684 (1988). [CrossRef] [PubMed]
  83. W. Koechner, “Q-switching,” in Solid-State Laser Engineering, T.Tamir, and A.L.Schawlow, eds. (Springer-Verlag, 1999), Chap. 8.
  84. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989). [CrossRef]
  85. D. B. Coyle, D. V. Guerra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995). [CrossRef]
  86. J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015(1988). [CrossRef]
  87. R. C. Powell, G. E. Venikouas, L. Xi, J. L. Tyminski, and M. R. Kokta, “Thermal effects on the optical spectra of Al2O3:Ti3+,” J. Chem. Phys. 84, 662–665 (1986). [CrossRef]
  88. S. DeSilvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, “Unstable laser resonators with super-Gaussian mirrors,” Opt. Lett. 13, 201–203 (1988). [CrossRef]
  89. S. DeSilvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988). [CrossRef]
  90. N. Hodgson and H. Weber, “Unstable resonators,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 7.
  91. A. E. Siegman, “Derivation of the cavity rate equation—spontaneous emission: the “extra photon,” in Lasers, A.Kelly, ed. (University Science, 1986), Chap. 13.2.
  92. S. Ismail and E. V. Browell, “Recent lidar technology developments and their influence on measurements of tropospheric water vapor,” J. Atmos. Ocean. Technol. 11, 76–84(1994). [CrossRef]
  93. Y.S.Touloukian and C.Y.Ho, eds., “Thermal conductivity—nonmetalic solids,” in Thermophysical Properties of Matter (IFI/Plenum, 1972), Vol.  2.
  94. Y.S.Touloukian and C.Y.Ho, eds., “Specific heat—nonmetalic solids,” in Thermophysical Properties of Matter (IFI/Plenum, 1972), Vol.  5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited