OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G31–G36

Hyperbranched CdTe nanostructures via a self-assembly route: optical properties

Ling-Yun Pan, Gen-cai Pan, Xiao-lei Che, Li Wang, Naoto Tamai, and Zhen-wen Dai  »View Author Affiliations


Applied Optics, Vol. 50, Issue 31, pp. G31-G36 (2011)
http://dx.doi.org/10.1364/AO.50.000G31


View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we report a luminescent nanobundle structure formed by a hierarchical self-assembly process of thioglycolic acid (TGA)-capped CdTe quantum dots (QDs). The luminescence intensity of CdTe nanostructures is high enough to get a clear one-photon excitation confocal image. High contrast two-photon excitation confocal images suggest that the nonlinear properties of pristine QDs are well inherited by the formed CdTe nanostructures. The controllability of the structures and inheritance of the optical properties of the building units make the self-assembled nanostructures new generation materials.

© 2011 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(180.1790) Microscopy : Confocal microscopy
(160.4236) Materials : Nanomaterials

History
Original Manuscript: July 1, 2011
Manuscript Accepted: July 22, 2011
Published: September 26, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Ling-Yun Pan, Gen-cai Pan, Xiao-lei Che, Li Wang, Naoto Tamai, and Zhen-wen Dai, "Hyperbranched CdTe nanostructures via a self-assembly route: optical properties," Appl. Opt. 50, G31-G36 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-31-G31


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310462–465 (2005). [CrossRef] [PubMed]
  2. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994). [CrossRef]
  3. W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8, 3262–3265 (2008). [CrossRef] [PubMed]
  4. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science 295, 2425–2427(2002). [CrossRef] [PubMed]
  5. M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010). [CrossRef]
  6. J. H. Bang and P. V. Kamat, “Quantum dot sensitized solar cells. a tale of two semiconductor nanocrystals: CdSe and CdTe,” ACS Nano 3, 1467–1476 (2009). [CrossRef] [PubMed]
  7. I. Gur, N. A. Fromer, C.-P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett. 7, 409–414 (2007). [CrossRef] [PubMed]
  8. M. J. Bierman and S. Jin, “Potential applications of hierarchical branching nanowires in solar energy,” Energy Environ. Sci. 2, 1050–1059 (2009). [CrossRef]
  9. A. J. Nozik, “Nanoscience and nanostructures for photovoltaics and solar fuels,” Nano Lett. 10, 2735–2744 (2010). [CrossRef] [PubMed]
  10. H. Cölfen and S. Mann, “Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures,” Angew. Chem., Int. Ed. Engl. 42, 2350–2365(2003). [CrossRef]
  11. H. Cölfen and M. Antonietti, “Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment,” Angew. Chem., Int. Ed. Engl. 44, 5576–5591 (2005). [CrossRef]
  12. L. Zhou and P. O’Brien, “Mesocrystals: a new class of solid materials,” Small 4, 1566–1574 (2008). [CrossRef] [PubMed]
  13. P. S. Weiss, “Hierarchical assembly,” ACS Nano 2, 1085–1087(2008). [CrossRef]
  14. Z. Tang, N. A. Kotov, and M. Giersig, “Spontaneous organization of single CdTe nanoparticles into luminescent nanowires,” Science 297, 237–240 (2002). [CrossRef] [PubMed]
  15. H. Zhang, D. Wang, and H. Möhwald, “Ligand-selective aqueous synthesis of one-dimensional CdTe nanostructures,” Angew. Chem., Int. Ed. Engl. 45, 748–751 (2006). [CrossRef]
  16. H. Niu and M. Gao, “Diameter-tunable CdTe nanotubes templated by 1D nanowires of cadmium thiolate polymer,” Angew. Chem., Int. Ed. Engl. 45, 6462–6466 (2006). [CrossRef]
  17. Z. Tang, Y. Wang, S. Shanbhag, M. Giersig, and N. A. Kotov, “Spontaneous transformation of CdTe nanoparticles into angled Te nanocrystals: from particles and rods to checkmarks, X-marks, and other unusual shapes,” J. Am. Chem. Soc. 128, 6730–6736 (2006). [CrossRef] [PubMed]
  18. M. Kuno, O. Ahmad, V. Protasenko, D. Bacinello, and T. H. Kosel, “Solution-based straight and branched CdTe nanowires,” Chem. Mater. 18, 5722–5732 (2006). [CrossRef]
  19. J. Sun, L.-W. Wang, and W. E. Buhro, “Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots,” J. Am. Chem. Soc. 130, 7997–8005 (2008). [CrossRef] [PubMed]
  20. L. Zhang, N. Gaponik, J. Muller, U. Plate, H. Weller, G. Erker, H. Fuchs, A. L. Rogach, and L. Chi, “Branched wires of CdTe nanocrystals using amphiphilic molecules as templates,” Small 1, 524–527 (2005). [CrossRef]
  21. S. Srivastava, A. Santos, K. Critchley, K.-S. Kim, P. Podsiadlo, K. Sun, J. Lee, C. Xu, G. D. Lilly, S. C. Glotzer, and N. A. Kotov, “Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons,” Science 327, 1355–1359 (2010). [CrossRef] [PubMed]
  22. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes,” J. Phys. Chem. B 106, 7177–7185(2002). [CrossRef]
  23. L.-Y. Pan, Y.-L. Zhang, H.-Y. Wang, H. Liu, J.-S. Luo, H. Xia, L. Zhao, Q.-D. Chen, S.-P. Xu, B.-R. Gao, L.-M. Fue, and H.-B. Sun, “Hierarchical self-assembly of CdTe quantum dots into hyperbranched nanobundles: suppression of biexciton Auger recombination,” Nanoscale 3, 2882–2888 (2011). [CrossRef] [PubMed]
  24. N. R. Jana, “Shape effect in nanoparticle self-assembly,” Angew. Chem., Int. Ed. Engl. 43, 1536–1540 (2004). [CrossRef]
  25. L. Pan, N. Tamai, K. Kamada, and S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91, 051902 (2007). [CrossRef]
  26. L. Pan, Jilin University, 2699 Qianjin Street, Changchun 130012, China, L. Wang, and N. Tamai are preparing a manuscript to be called “Exciton recombination dynamics in self-assembled CdTe nanowires.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited