OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G98–G103

Wideband slow light with ultralow dispersion in a W1 photonic crystal waveguide

Jian Liang, Li-Yong Ren, Mao-Jin Yun, and Xing-Jun Wang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G98-G103 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (636 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dispersion tailoring scheme for obtaining slow light in a silicon-on-insulator W1-type photonic crystal waveguide, novel to our knowledge, is proposed in this paper. It is shown that, by simply shifting the first two rows of air holes adjacent to the waveguide to specific directions, slow light with large group- index, wideband, and low group-velocity dispersion can be realized. Defining a criterion of restricting the group-index variation within a ± 0.8 % range as a flattened region, we obtain the ultraflat slow light with bandwidths over 5.0, 4.0, 2.5, and 1.0 nm when keeping the group index at 38.0, 48.8, 65.2, and 100.4, respectively. Numerical simulations are performed utilizing the three-dimensional (3D) plane-wave expansion method and the 3D finite-difference time-domain method.

© 2011 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.7390) Optical devices : Waveguides, planar
(260.2030) Physical optics : Dispersion
(230.5298) Optical devices : Photonic crystals

Original Manuscript: July 1, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: September 21, 2011
Published: October 20, 2011

Jian Liang, Li-Yong Ren, Mao-Jin Yun, and Xing-Jun Wang, "Wideband slow light with ultralow dispersion in a W1 photonic crystal waveguide," Appl. Opt. 50, G98-G103 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Talneau, “Slowing down the light for delay lines implementation: design and performance,” C. R. Physique 10, 949–956(2009). [CrossRef]
  2. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32, 915–917 (2007). [CrossRef] [PubMed]
  3. F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347–1348 (2005). [CrossRef]
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008). [CrossRef]
  5. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  6. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le V. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001). [CrossRef]
  7. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672(2006). [CrossRef] [PubMed]
  8. A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  9. D. Mori and T. Baba, “Dispersion-controlled optical group delay device chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004). [CrossRef]
  10. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007). [CrossRef] [PubMed]
  11. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005). [CrossRef] [PubMed]
  12. L. H. Frandsen, A. V. Lavrinenko, J. F. Pefersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef] [PubMed]
  13. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007). [CrossRef] [PubMed]
  14. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328(2007). [CrossRef] [PubMed]
  15. J. T. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef] [PubMed]
  16. F. C. Leng, W. Y. Liang, B. Liu, T. B. Wang, and H. Z. Wang, “Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides,” Opt. Express 18, 5707–5712(2010). [CrossRef] [PubMed]
  17. J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010). [CrossRef]
  18. M. E. Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  19. T. R. Nielsen, J. Mørk, and A. V. Lavrinenko, “Slow light pulse propagation on dispersive media,” C. R. Physique 10, 957–963(2009). [CrossRef]
  20. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074(2009). [CrossRef] [PubMed]
  21. K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010). [CrossRef] [PubMed]
  22. A. Têtu, M. Kristensen, L. H. Frandsen, A. Harpøth, P. I. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Opt. Express 13, 8606–8611 (2005). [CrossRef] [PubMed]
  23. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  24. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).
  26. O. Hess, C. Hermann, and A. Klaedtke, “Finite-difference time-domain simulations of photonic crystal defect structures,” Phys. Status Solidi A 197, 605–619 (2003). [CrossRef]
  27. M. Zhang, N. Groothoff, A. C. Krüger, P. X. Shi, and M. Kristensen, “Direct slow-light excitation in photonic crystal waveguides forming ultra-compact splitters,” Opt. Express 19, 7120–7126 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited