OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: 6384–6390

Laser ablation of silicon using a Bessel-like beam generated by a subwavelength annular aperture structure

Yuh-Yan Yu, Chin-Kai Chang, Ming-Wei Lai, Long-Sun Huang, and Chih-Kung Lee  »View Author Affiliations

Applied Optics, Vol. 50, Issue 34, pp. 6384-6390 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a femtosecond laser incident to an oxide-metal-oxide film engraved with a subwavelength annular aperture (SAA) structure, we generated a Bessel-like beam to ablate silicon. Experimental results show that the silicon can be ablated with a 0.05 J / cm 2 input ablation threshold at 120 fs pulse duration. We obtained a surface hole possessing a diameter less than 1 μm . Optical performance, including depth-of-focus and focal spot of the SAA structure, were simulated using finite-different time-domain calculations. We found that a far-field laser beam propagating through a SAA structure possesses a submicrometer focal spot and high focus intensity. Our method can be easily adopted for surface machining in microfabrication applications.

© 2011 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(220.4000) Optical design and fabrication : Microstructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: July 22, 2011
Revised Manuscript: September 8, 2011
Manuscript Accepted: September 13, 2011
Published: November 25, 2011

Yuh-Yan Yu, Chin-Kai Chang, Ming-Wei Lai, Long-Sun Huang, and Chih-Kung Lee, "Laser ablation of silicon using a Bessel-like beam generated by a subwavelength annular aperture structure," Appl. Opt. 50, 6384-6390 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).
  2. M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl. 20, 169–184 (2008). [CrossRef]
  3. M. S. Giridhar, K. Seong, A. Schulzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt. 43, 4584–4589 (2004). [CrossRef] [PubMed]
  4. M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998). [CrossRef]
  5. C. P. Shillaber, Photomicrography in Theory and Practice(Wiley, 1944).
  6. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  7. J. Durnin, “Exact-solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  8. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005). [CrossRef] [PubMed]
  9. D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 3 (2008). [CrossRef]
  10. Y. Y. Yu, D. Z. Lin, L. S. Huang, and C. K. Lee, “Effect of subwavelength annular aperture diameter on the nondiffracting region of generated Bessel beams,” Opt. Express 17, 2707–2713 (2009). [CrossRef] [PubMed]
  11. G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992). [CrossRef]
  12. J. A. Davis, J. Guertin, and D. M. Cottrell, “Diffraction-free beams generated with programmable spatial light modulators,” Appl. Opt. 32, 6368–6370 (1993). [CrossRef] [PubMed]
  13. A. J. Cox and D. C. Dibble, “Holographic reproduction of a diffraction-free beam,” Appl. Opt. 30, 1330–1332 (1991). [CrossRef] [PubMed]
  14. M. Elbandrawy and M. C. Gupta, “Optical characteristics of femtosecond laser micromachined periodic structures in Si 〈100〉,” Appl. Opt. 45, 7137–7143 (2006). [CrossRef] [PubMed]
  15. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010). [CrossRef]
  16. M. Kohno and Y. Matsuoka, “Microfabrication and drilling using diffraction-free pulsed laser beam generated with axicon lens,” JSME Int. J. Ser. B 47, 497–500 (2004). [CrossRef]
  17. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18, 566–574 (2010). [CrossRef] [PubMed]
  18. D. P. Korfiatis, K. A. T. Thoma, and J. C. Vardaxoglou, “Conditions for femtosecond laser melting of silicon,” J. Phys. D 40, 6803–6808 (2007). [CrossRef]
  19. D. Kawamura, A. Takita, Y. Hayasaki, and N. Nishida, “Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating,” Appl. Phys. 82, 523–527 (2006). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  21. C. K. Chang, D. Z. Lin, Y. C. Chang, M. W. Lin, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Enhancing intensity of emitted light from a ring by incorporating a circular groove,” Opt. Express 15, 15029–15034 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited