OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: H128–H135

Complex Fresnel hologram display using a single SLM

Jung-Ping Liu, Wang-Yu Hsieh, Ting-Chung Poon, and Peter Tsang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 34, pp. H128-H135 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel optical method to display a complex Fresnel hologram using a single spatial light modulator (SLM). The method consists of a standard coherent image processing system with a sinusoidal grating at the Fourier plane. Two or three position-shifted amplitude holograms displayed at the input plane of the processing system can be coupled via the grating and will be precisely overlapped at the system’s output plane. As a result, we can synthesize a complex hologram that is free of the twin image and the zero-order light using a single SLM. Because the twin image is not removed via filtering, the full bandwidth of the SLM can be utilized for displaying on-axis holograms. In addition, the degree of freedom of the synthesized complex hologram display can be extended by involving more than three amplitude holograms.

© 2011 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.2870) Holography : Holographic display
(120.2040) Instrumentation, measurement, and metrology : Displays
(090.1995) Holography : Digital holography

ToC Category:
Holographic Reconstruction, Display, and Projection

Original Manuscript: August 1, 2011
Revised Manuscript: October 5, 2011
Manuscript Accepted: October 18, 2011
Published: November 17, 2011

Virtual Issues
Digital Holography and 3D Imaging 2011 (2011) Applied Optics

Jung-Ping Liu, Wang-Yu Hsieh, Ting-Chung Poon, and Peter Tsang, "Complex Fresnel hologram display using a single SLM," Appl. Opt. 50, H128-H135 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962). [CrossRef]
  3. Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt. 48, 3255–3260 (2009). [CrossRef] [PubMed]
  4. Y. Takaki, M. Yokouchi, and N. Okada, “Improvement of grayscale representation of the horizontally scanning holographic display,” Opt. Express 18, 24926–24936 (2010). [CrossRef] [PubMed]
  5. R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801 (2010). [CrossRef]
  6. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386(2008). [CrossRef] [PubMed]
  7. K. Choi, J. Kim, Y. Lim, and B. Lee, “Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array,” Opt. Express 13, 10494–10502 (2005). [CrossRef] [PubMed]
  8. T. Mishina, F. Okano, and I. Yuyama, “Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones,” Appl. Opt. 38, 3703–3713 (1999). [CrossRef]
  9. Y. Takaki and Y. Tanemoto, “Band-limited zone plates for single-sideband holography,” Appl. Opt. 48, H64–H70 (2009). [CrossRef] [PubMed]
  10. T.-C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Twin-image elimination experiments for three-dimensional images in optical scanning holography,” Opt. Lett. 25, 215–217 (2000). [CrossRef]
  11. B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990). [CrossRef]
  12. J. A. Coy, M. Zaldarriaga, D. F. Grosz, and O. E. Martinez, “Characterization of a liquid crystal television as a programmable spatial light modulator,” Opt. Eng. 35, 15–19 (1996). [CrossRef]
  13. P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000). [CrossRef]
  14. V. Arrizón, G. Méndez, and D. Sánchez-de-La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13, 7913–7927 (2005). [CrossRef] [PubMed]
  15. R. W. Cohn and M. Liang, “Pseudorandom phase-only encoding of real-time spatial light modulators,” Appl. Opt. 35, 2488–2498 (1996). [CrossRef] [PubMed]
  16. V. Arrizón, “Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach,” Opt. Lett. 28, 1359–1361 (2003). [CrossRef] [PubMed]
  17. V. Arrizón, “Optimum on-axis computer-generated hologram encoded into low-resolution phase-modulation devices,” Opt. Lett. 28, 2521–2523 (2003). [CrossRef] [PubMed]
  18. V. Arrizón, L. A. González, R. Ponce, and A. Serrano-Heredia, “Computer-generated holograms with optimum bandwidths obtained with twisted-nematic liquid-crystal displays,” Appl. Opt. 44, 1625–1634 (2005). [CrossRef] [PubMed]
  19. E. Buckley, A. Cable, N. Lawrence, and T. Wilkinson, “Viewing angle enhancement for two-and three-dimensional holographic displays with random superresolution phase masks,” Appl. Opt. 45, 7334–7341 (2006). [CrossRef] [PubMed]
  20. D. Mendlovic, G. Shabtay, U. Levi, Z. Zalevsky, and E. Marom, “Encoding technique for design of zero-order (on-axis) Fraunhofer computer-generated holograms,” Appl. Opt. 36, 8427–8434 (1997). [CrossRef]
  21. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999). [CrossRef]
  22. L. G. Neto, D. Roberge, and Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35, 4567–4576 (1996). [CrossRef] [PubMed]
  23. R. Tudela, I. Labastida, E. Martín-Badosa, S. Vallmitjana, I. Juvells, and A. Carnicer, “A simple method for displaying Fresnel holograms on liquid crystal panels,” Opt. Commun. 214, 107–114 (2002). [CrossRef]
  24. M.-L. Hsieh, M.-L. Chen, and C.-J. Cheng, “Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique,” Opt. Eng. 46, 070501 (2007). [CrossRef]
  25. R. Tudela, E. Martín-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, “Full complex Fresnel holograms displayed on liquid crystal devices,” J. Opt. A 5, S189–S194 (2003). [CrossRef]
  26. T. Ra, M.-B. Estela, L. Ignasi, V. Santiago, and C. Artur, “Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices,” Opt. Eng. 43, 2650–2657 (2004). [CrossRef]
  27. S.-G. Kim, B. Lee, and E.-S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36, 4784–4791 (1997). [CrossRef] [PubMed]
  28. T.-C. Poon, Optical Scanning Holography with MATLAB (Springer, 2007). [CrossRef]
  29. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2005).
  30. P. Tsang, T.-C. Poon, W. K. Cheung, and J.-P. Liu, “Computer generation of binary Fresnel holography,” Appl. Opt. 50, B88–B95 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited