OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: H165–H170

High-speed cross-sectional imaging of valuable documents using common-path swept-source optical coherence tomography

Kazuo Fujiwara and Osamu Matoba  »View Author Affiliations

Applied Optics, Vol. 50, Issue 34, pp. H165-H170 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (667 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A common-path swept-source optical coherence tomography (SS-OCT) is a promising scheme for implementing a high-speed and stable OCT system. We investigate the capability of a common-path SS-OCT system to perform the cross-sectional imaging of valuable documents translated at high speed for the check of its security feature. The influence of transport speeds, up to 2000 mm/s, on the depth resolution and the signal intensity is experimentally evaluated using a SS-OCT system equipped with a swept source at a center wavelength of 1335 nm and with a sweep repetition rate of 50 kHz. The degradation of the measured signal is in good agreement with theory.

© 2011 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(110.4500) Imaging systems : Optical coherence tomography
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(120.4640) Instrumentation, measurement, and metrology : Optical instruments

ToC Category:
3D Imaging and Display

Original Manuscript: August 1, 2011
Revised Manuscript: October 30, 2011
Manuscript Accepted: October 31, 2011
Published: December 1, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics
Digital Holography and 3D Imaging 2011 (2011) Applied Optics

Kazuo Fujiwara and Osamu Matoba, "High-speed cross-sectional imaging of valuable documents using common-path swept-source optical coherence tomography," Appl. Opt. 50, H165-H170 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Van Renesse, Optical Document Security (Artech House, 2005).
  2. K. Fujiwara and O. Matoba, “Detection and evaluation of security features embedded in paper using spectral-domain optical coherence tomography,” Opt. Rev.18, 171–175 (2011).1340-6000 [CrossRef]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).0036-8075 [CrossRef]
  4. Y. Cheng and K. Larin, “Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis,” Appl. Opt.45, 9238–9245 (2006).0003-6935 [CrossRef]
  5. Y. Hayasaki, Y. Matsuba, A. Nagaoka, H. Yamamoto, and N. Nishida, “Hiding an image with a light-scattering medium and use of a contrast-discrimination method for readout,” Appl. Opt.43, 1552–1558 (2004).0003-6935 [CrossRef]
  6. E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, “Study on the use of optical coherence tomography in measurements of paper properties,” Meas. Sci. Technol.16, 1131–1137 (2005).0957-0233 [CrossRef]
  7. T. Fabritius, E. Alarousa, T. Prykari, J. Hast, and R. Myllyla, “Characterisation of optically cleared paper by optical coherence tomography,” Quantum Electron.36, 181–187 (2006).1063-7818 [CrossRef]
  8. M. J. Ju, S. J. Lee, E. J. Min, Y. Kim, H. Y. Kim, and B. H. Lee, “Evaluating and identifying pearls and their nuclei by using optical coherence tomography,” Opt. Express18, 13468–13477 (2010).1094-4087 [CrossRef]
  9. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11, 889–894 (2003).1094-4087 [CrossRef]
  10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28, 2067–2069 (2003).0146-9592 [CrossRef]
  11. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11, 2183–2189 (2003).1094-4087 [CrossRef]
  12. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11, 2953–2963 (2003).1094-4087 [CrossRef]
  13. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt.42, 6953–6958 (2003).0003-6935 [CrossRef]
  14. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express17, 2375–2384 (2009).1094-4087 [CrossRef]
  15. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995).0030-4018 [CrossRef]
  16. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).1094-4087 [CrossRef]
  17. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12, 367–376 (2004).1094-4087 [CrossRef]
  18. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22, 340–342 (1997).0146-9592 [CrossRef]
  19. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chang, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express13, 10652–10664 (2005).1094-4087 [CrossRef]
  20. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12, 2977–2998 (2004).1094-4087 [CrossRef]
  21. J. Carlsson, P. Hellentin, L. Malmqvist, A. Persson, W. Persson, and C-G. Wahlstrom, “Time-resolved studies of light propagation in paper,” Appl. Opt.34, 1528–1535 (1995).0003-6935 [CrossRef]
  22. K. Green, L. Lamberg, and K. Lumme, “Stochastic modeling of paper structure and Monte Carlo simulation of light scattering,” Appl. Opt.39, 4669–4683 (2000).0003-6935 [CrossRef]
  23. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17, 14880–14894 (2009).1094-4087
  24. C. M. Eigenwilling, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express17, 18794–18807 (2009).1094-4087 [CrossRef]
  25. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19, 12141–12155 (2011).1094-4087 [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited