OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: H62–H67

Controlling the transverse momentum distribution of a light field via azimuth division of a hologram in holographic optical tweezers

Sheng-Yang Tseng and Long Hsu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 34, pp. H62-H67 (2011)
http://dx.doi.org/10.1364/AO.50.000H62


View Full Text Article

Enhanced HTML    Acrobat PDF (773 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study proposes a method for creating a light field with controlled distribution of transverse momentum (TM) by displaying a hologram only in an azimuth region that centers at θ 0 and has a range of Δ θ of a spatial light modulator in holographic optical tweezers. This study utilized ray optics to analyze the TM of the resultant field, revealing that the direction of the TM is determined by the center angle of the azimuth region and that the magnitude of the TM is proportional to sin ( Δ θ / 2 ) , without regarding the intensity. The relationship was verified experimentally. In addition, this study demonstrated moving particles along a designed path and depleting particles by the fields.

© 2011 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(140.7010) Lasers and laser optics : Laser trapping
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Trapping

History
Original Manuscript: June 6, 2011
Revised Manuscript: September 3, 2011
Manuscript Accepted: September 9, 2011
Published: November 10, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics
Digital Holography and 3D Imaging 2011 (2011) Applied Optics

Citation
Sheng-Yang Tseng and Long Hsu, "Controlling the transverse momentum distribution of a light field via azimuth division of a hologram in holographic optical tweezers," Appl. Opt. 50, H62-H67 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-H62


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999). [CrossRef]
  2. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000). [CrossRef]
  3. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  4. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004). [CrossRef] [PubMed]
  5. A. Jesacher, S. Furhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Holographic optical tweezers for object manipulations at an air-liquid surface,” Opt. Express 14, 6342–6352 (2006). [CrossRef] [PubMed]
  6. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004). [CrossRef] [PubMed]
  7. J. Plewa, E. Tanner, D. M. Mueth, and D. G. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express 12, 1978–1981 (2004). [CrossRef] [PubMed]
  8. J. Lin, X. C. Yuan, S. H. Tao, X. Peng, and H. B. Niu, “Deterministic approach to the generation of modified helical beams for optical manipulation,” Opt. Express 13, 3862–3867(2005). [CrossRef] [PubMed]
  9. J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872–874 (2003). [CrossRef] [PubMed]
  10. Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett. 31, 1675–1677(2006). [CrossRef] [PubMed]
  11. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479–4486 (2008). [CrossRef] [PubMed]
  12. E. R. Shanblatt and D. G. Grier, “Extended and knotted optical traps in three dimensions,” Opt. Express 19, 5833–5838(2011). [CrossRef] [PubMed]
  13. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008). [CrossRef] [PubMed]
  14. S. Y. Tseng and L. Hsu, “An intuitive view of the origin of orbital angular momentum in optical vortices,” Proc. SPIE 6326, 63261C (2006). [CrossRef]
  15. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  16. M. Mansuripur, Classical Optics and its Applications(Cambridge University Press, 2002).
  17. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 1996).
  18. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  19. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (281 KB)     
» Media 2: MOV (3676 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited