OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 35 — Dec. 10, 2011
  • pp: 6409–6423

Extracting mineral effects on ultraviolet penetration and its effects in coastal and inland waters: a Monte Carlo study

William E. Mulberry and Robert H. Stavn  »View Author Affiliations

Applied Optics, Vol. 50, Issue 35, pp. 6409-6423 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1367 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A factor significantly affecting the ultraviolet (UV) radiation’s interactions with the aquatic environ ment is the concentration of suspended sediment. We utilize data on UV penetration, absorption, and scattering in Lake Biwa, Japan, reported by Belzile et al. [Limnol. Oceanogr. 47, 95 (2002)], to drive Monte Carlo simulations of UV penetration. We generated Monte Carlo models (2 billion photons per simulation) of four stations reported by Belzile et al.: two low sediment stations and two high sediment stations. New modes are proposed for analyzing UV penetration and dosage factors for aquatic organisms in sediment dominated aquatic environments.

© 2011 Optical Society of America

OCIS Codes
(170.7050) Medical optics and biotechnology : Turbid media
(260.7190) Physical optics : Ultraviolet
(290.2558) Scattering : Forward scattering
(010.4458) Atmospheric and oceanic optics : Oceanic scattering
(010.1030) Atmospheric and oceanic optics : Absorption
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Physical Optics

Original Manuscript: June 15, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 22, 2011
Published: December 2, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

William E. Mulberry and Robert H. Stavn, "Extracting mineral effects on ultraviolet penetration and its effects in coastal and inland waters: a Monte Carlo study," Appl. Opt. 50, 6409-6423 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.Calkins, ed., The Role of Solar Ultraviolet Radiation in Marine Ecosystems, NATO Conference Series (Springer, 1982).
  2. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Blackwell Science, 1997).
  3. J. J. Cullen, P. J. Neale, and M. P. Lesser, “Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation,” Science 258, 646–650 (1992). [CrossRef] [PubMed]
  4. M. Llabres and S. Agusti, “Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities,” Limnol. Oceanogr. 51, 21–29 (2006). [CrossRef]
  5. R. G. Zepp, T. V. Callaghan, and D. J. Erickson, “Effects of increased solar ultraviolet radiation on biogeochemical cycles,” Ambio 24, 181–187 (1995).
  6. R. G. Wetzel, Limnology: Lake and River Ecosystems(Academic, 2001).
  7. P. A. Boelen, A. F. Post, M. J. W. Veldhuis, and A. G. J. Buma, “Diel patterns of UVBR-induced DNA damage in picophytoplankton size fractions from the Gulf of Aqaba, Red Sea,” Microb. Ecol. 44, 164–174 (2002). [CrossRef] [PubMed]
  8. C. W. Hawryghyn and W. N. McFarland, “Cone photoreception mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. A 60, 459–465 (1987). [CrossRef]
  9. J. K. Bowmaker and Y. W. Kuntz, “Ultraviolet receptors. tetrachromatic colour vision, and retinal mosaics in the brown trout (Salmo trutta) age-dependent change,” Vision Res. 27, 2102–2108 (1987). [CrossRef]
  10. W. F. Vincent, “Solar UV-B and aquatic primary production: damage, protection, and recovery,” Environ. Rev. 1, 1–12(1993). [CrossRef]
  11. R. Smith and K. Baker, “Penetration of UV-B and biologically effective dose-rates in natural waters,” Photochem. Photobiol. 32, 367–374 (1979).
  12. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge, 1994). [CrossRef]
  13. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7505 (1993). [CrossRef] [PubMed]
  14. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984). [CrossRef]
  15. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467(1991). [CrossRef]
  16. J. T. O. Kirk, “Characteristics of the light field in highly turbid waters: a Monte Carlo study,” Limnol. Oceanogr. 39, 702–706(1994). [CrossRef]
  17. T. L. Petzold, “Volume scattering functions for selected ocean waters,” Scripps Inst. Oceanogr Ref. 72-28 (Scripps Institute of Oceanography, 1972).
  18. C. Belzile, W. F. Vincent, and M. Kumagai, “Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa,” Limnol. Oceanogr. 47, 95–107 (2002). [CrossRef]
  19. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  20. M. Iqbal, An Introduction to Solar Radiation (Academic, 1983).
  21. W. E. Mulberry, “Particulate scattering and the penetration and effects of ultraviolet light in coastal and inland waters,” M.S. thesis (University of North Carolina at Greensboro, 2007).
  22. O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Environ. Geol. 34, 257–269 (1998). [CrossRef]
  23. D. Stramski and S. B. Wozniak, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004). [CrossRef]
  24. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002). [CrossRef] [PubMed]
  25. W. F. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa, “Effects of seston on ultraviolet attenuation in Lake Biwa,” Limnol. Oceanogr. 2, 179–184 (2001).
  26. R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999). [CrossRef]
  27. G. C. Miller and R. G. Zepp, “Effects of suspended sediments on photolysis rates of dissolved pollutants,” Water Res. 13, 453–459 (1979). [CrossRef]
  28. R. H. Stavn, “The three-parameter model of the submarine light field: radiant energy absorption and trapping in nepheloid layers recalculated,” J. Geophys. Res. 92, 1934–1936(1987). [CrossRef]
  29. H. I. Browman, I. Navales-Flamaridue, and C. W. Hawryghyn, “Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes,” J. Exp. Biol. 186, 187–198 (1994).
  30. G. H. Jacobs, “Ultraviolet vision in vertebrates,” Am. Zool. 32, 544–554 (1992).
  31. W. L. Chiang, R. S. Wu, P. K. Yu, and D. W. Au, “Are barnacle larvae able to escape from the threat of UV?,” Mar. Biol. 151, 703–711 (2007). [CrossRef]
  32. W. L. Chiang, D. W. T. Au, P. K. N. Yu, and R. S. S. Wu, “UV-B damages eyes of barnacle larvae and impairs their photo-responses and settlement success,” Environ. Sci. Technol. 37, 1089–1092 (2003). [CrossRef] [PubMed]
  33. N. G. Jerlov, Marine Optics (Elsevier, 1976).
  34. K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, 1988).
  35. C. L. Gallegos and R. G. Menzel, “Submicron size distributions of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23, 596–602(1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited