OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 35 — Dec. 10, 2011
  • pp: 6536–6542

Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication

Min Tang, Zai Chun Chen, Zhi Qiang Huang, Yoo Sang Choo, and Ming Hui Hong  »View Author Affiliations


Applied Optics, Vol. 50, Issue 35, pp. 6536-6542 (2011)
http://dx.doi.org/10.1364/AO.50.006536


View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports a maskless multiple-beam laser lithography technique for large-area nanostructure/microstructure fabrication. This lithography technique can flexibly generate arbitrary nanostructures/microstructures over a large area at a high speed. The feature size of the nanostructures/microstructures can be controlled by exposure time and moving speed of the nanostage. Functional predesigned patterns, including split-ring resonator metamaterials for terahertz waves, can be obtained. More complicated structures can be made by single- and double-exposure schemes to make hybrid nanostructures/microstructures and tune surface plasmonic resonance properties. Meanwhile, microstructures with large height to lateral dimension ratios (2.5D microstructures) fabricated on silicon substrates can be used as mold tools for soft lithography. This technology shows its unique capacity to create various nanostructures/microstructures for extensive applications.

© 2011 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: June 6, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: August 5, 2011
Published: December 9, 2011

Citation
Min Tang, Zai Chun Chen, Zhi Qiang Huang, Yoo Sang Choo, and Ming Hui Hong, "Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication," Appl. Opt. 50, 6536-6542 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-35-6536


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theory Tech. 49, 297–307(2001). [CrossRef]
  2. K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004). [CrossRef]
  3. J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552–1574 (1998). [CrossRef]
  4. A. W. Martinez, S. T. Phillips, and G. M. Whitesides, “Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc. Natl. Acad. Sci. USA 105, 19606–19611(2008). [CrossRef]
  5. J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007). [CrossRef]
  6. I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981). [CrossRef]
  7. S. Leggatt and M. C. Hutley, “Microlens arrays for interconnection of single mode fibre arrays,” Electron. Lett. 27, 238–240 (1991). [CrossRef]
  8. M. E. Motamedi, “Micro-opto-electro-mechanical systems,” Opt. Eng. 33, 3505–3517 (1994). [CrossRef]
  9. D. S. Ko, “A decompression method for the fabrication of polymer microlens arrays,” Infrared Phys. Technol. 45, 177–180 (2004). [CrossRef]
  10. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006). [CrossRef]
  11. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithography,” Science 283, 661–663 (1999). [CrossRef]
  12. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006). [CrossRef]
  13. M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005). [CrossRef]
  14. B. Besold and N. Lindlein, “Practical limitations of Talbot imaging with microlens arrays,” Pure Appl. Opt. 6, 691–698(1997). [CrossRef]
  15. R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005). [CrossRef]
  16. C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007). [CrossRef]
  17. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009). [CrossRef]
  18. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19, 6990–6998 (2011). [CrossRef]
  19. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113(2009). [CrossRef]
  20. H. Wu, T. W. Odom, and G. M. Whitesides, “Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask,” J. Am. Chem. Soc. 124, 7288–7289(2002). [CrossRef]
  21. J. Serpe, J. Kim, and L. A. Lyon, “Colloidal hydrogel microlenses,” Adv. Mater. 16, 184–187 (2004). [CrossRef]
  22. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative–positive tunable liquid-crystal microlens array by printing,” Opt. Express 17, 4317–4323 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited