OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: 492–499

Mode coupling and output beam quality of 100 400 μm core silica fibers

Simon Hurand, Lucam-A. Chauny, Hazem El-Rabii, Sachin Joshi, and Azer P. Yalin  »View Author Affiliations

Applied Optics, Vol. 50, Issue 4, pp. 492-499 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Propagation and mode coupling within relatively short ( 1 10 m ) large core, nominally multimode, fibers are of interest in a number of applications. In this research, we have studied the output beam quality and mode coupling in various fibers with core diameters of 100 400 μm and lengths of 2 m . Output beam quality ( M 2 ) and mode-coupling coefficients ( D ) have been studied for different clad dimensions, numerical apertures, and wavelengths. The mode-coupling coefficients have been determined based on modal power diffusion considerations. The results show that D scales approximately as the inverse square of the clad dimension and inverse square root of the wavelength. Output from a 2 m length fiber of 100 μm core and 660 μm clad fiber is close to single mode ( M 2 = 1.6 ), while output from a 200 μm core and 745 μm clad fiber also has high beam quality.

© 2011 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 22, 2010
Revised Manuscript: November 16, 2010
Manuscript Accepted: November 19, 2010
Published: January 27, 2011

Simon Hurand, Lucam-A. Chauny, Hazem El-Rabii, Sachin Joshi, and Azer P. Yalin, "Mode coupling and output beam quality of 100–400 μm core silica fibers," Appl. Opt. 50, 492-499 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. X. Phuoc, “Laser-induced spark for simultaneous ignition and fuel-to-air ratio measurements,” Opt. Lasers Eng. 44, 520–534 (2006). [CrossRef]
  2. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55–77 (2004). [CrossRef]
  3. D. Graham-Rowe, “Lasers for engine ignition,” Nat. Photon. 2, 515–517 (2008). [CrossRef]
  4. H. El-Rabii, K. Zahringer, J. C. Rolon, and F. Lacas, “Laser ignition in a lean premixed prevaporized injector,” Combust. Sci. Technol. 176, 1391–1417 (2004). [CrossRef]
  5. S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46, 4057–4064(2007). [CrossRef] [PubMed]
  6. A. P. Yalin, S. Joshi, M. DeFoort, and B. Willson, “Towards multiplexed fiber delivered laser ignition for natural gas engines,” J. Eng. Gas Turbines Power 130, 044502 (2008). [CrossRef]
  7. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007). [CrossRef]
  8. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009). [CrossRef]
  9. M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” in Lasers and Electro-Optics 2009 and 2009 Conference on Quantum Electronics and Laser Science (IEEE, 2009), pp. 1–2. [CrossRef]
  10. R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm,” J. Appl. Phys. 70, 2890–2892 (1991). [CrossRef]
  11. D. I. Rosen and G. Weyl, “Laser-induced breakdown in nitrogen and the rare-gases at 0.53 and 0.35 μm,” J. Phys. D 20, 1264–1276 (1987). [CrossRef]
  12. T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175, 419–423 (2000). [CrossRef]
  13. A. Smith, B. Do, R. Schuster, and D. Collier, “Rate equation model of bulk optical damage of silica, and the influence of polishing on surface optical damage of silica,” in Fiber Lasers V: Technology, Systems, and Applications, J.Broeng and C.Headley, eds. (2008), pp. U118–U129.
  14. A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).
  15. H. El-Rabii and G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” Appl. Phys. B 87, 139–144 (2007). [CrossRef]
  16. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003). [CrossRef]
  17. A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).
  18. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).
  19. D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,” Appl. Opt. 11, 2506–2513 (1972). [CrossRef] [PubMed]
  20. R. Olshansky, “Distortion losses in cabled optical fibers,” Appl. Opt. 14, 20–21 (1975). [CrossRef] [PubMed]
  21. R. Olshansky, “Mode-coupling effects in graded-index optical fibers,” Appl. Opt. 14, 935–945 (1975). [CrossRef] [PubMed]
  22. C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun. 269, 310–314 (2007). [CrossRef]
  23. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998). [CrossRef]
  24. D. Donlagic and B. Culshaw, “Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems,” J. Lightwave Technol. 18, 334–342 (2000). [CrossRef]
  25. D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17, 1856–1868(1999). [CrossRef]
  26. A. Bjarklev, J. Broeng, and A. -S. Bjarklev, Photonic Crystal Fibers (Springer, 2003). [CrossRef]
  27. nktphotonics, “http://www.nktphotonics.com/files/files/LMA-35-080926.pdf.”
  28. O. Schmidt, J. Rothhardt, F. Roser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tunnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32, 1551–1553 (2007). [CrossRef] [PubMed]
  29. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000). [CrossRef]
  30. K. -C. Hou, “High-peak-power fiber-laser technology for laser-produced-plasma extreme ultraviolet lithography,” Ph.Ddissertation (University of Michigan, 2008).
  31. J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009). [CrossRef]
  32. J. Tauer, H. Kofler, E. Schwarz, and E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central Eur. J. Phys. 8, 242–248 (2010). [CrossRef]
  33. A. E. Siegman, “Defining, measuring, and optimizing laser-beam quality,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A.Bhowmik, ed. (SPIE, 1993), pp. 2–12.
  34. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused-silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988). [CrossRef] [PubMed]
  35. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3145 (1985). [CrossRef] [PubMed]
  36. J. Mateo, M. A. Losada, and I. Garces, “Global characterization of optical power propagation in step-index plastic optical fibers,” Opt. Express 14, 9028–9035 (2006). [CrossRef] [PubMed]
  37. M. Rousseau and L. Jeunhomme, “Numerical-solution of coupled-power equation in step-index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977). [CrossRef]
  38. A. Djordjevich and S. Savovic, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000). [CrossRef]
  39. S. Savovic and A. Djordjevich, “Method for calculating the coupling coefficient in step-index optical fibers,” Appl. Opt. 46, 1477–1481 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited