OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: 579–585

Fabrication of ellipticity-controlled microlens arrays by controlling the parameters of the multiple-exposure two-beam interference technique

Danh Bich Do, Ngoc Diep Lai, Cheng Yi Wu, Jian Hung Lin, and Chia Chen Hsu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 4, pp. 579-585 (2011)
http://dx.doi.org/10.1364/AO.50.000579


View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a promising method for fabrication of plastic microlens arrays (MLAs) with a controllable ellipticity and structure, by using the combination of multiple-exposure two-beam interference and plastic replication techniques. Multiple exposures of a two-beam interference pattern with a wavelength of 442 nm into a thick positive photoresist (AZ-4620) were used to form different two-dimensional periodic structures. Thanks to the developing effect of the positive photoresist, fabricated structures consisting of hemielliptical- or hemispherical-shaped concave holes were obtained. By controlling the rotation angle between different exposures, both the shape and structure of the holes varied. By adjusting the dosage ratio between different exposures, the shape of the holes was modified while the structure of the holes was unchanged. The photoresist concave microstructures were then transferred to plastic MLAs by employing replication and embossing techniques. The fabricated MLAs were characterized by a scanning electron microscope and atomic force microscope measurements. We show that the ellipticity of the microlenses can be well controlled from 0 (hemispherical) to 0.96 (hemielliptical) by changing the rotation angle or dosage ratio between the two exposures.

© 2011 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(110.5220) Imaging systems : Photolithography
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: October 14, 2010
Manuscript Accepted: December 10, 2010
Published: January 31, 2011

Citation
Danh Bich Do, Ngoc Diep Lai, Cheng Yi Wu, Jian Hung Lin, and Chia Chen Hsu, "Fabrication of ellipticity-controlled microlens arrays by controlling the parameters of the multiple-exposure two-beam interference technique," Appl. Opt. 50, 579-585 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-4-579

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited