OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: A38–A48

Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H 2

Hans U. Stauffer, Waruna D. Kulatilaka, Paul S. Hsu, James R. Gord, and Sukesh Roy  »View Author Affiliations


Applied Optics, Vol. 50, Issue 4, pp. A38-A48 (2011)
http://dx.doi.org/10.1364/AO.50.000A38


View Full Text Article

Enhanced HTML    Acrobat PDF (874 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the development and application of a simple theoretical model for extracting temperatures from picosecond-laser-based coherent anti-Stokes Raman scattering (CARS) spectra of H 2 obtained using time-delayed probe pulses. This approach addresses the challenges associated with the effects of rotational-level-dependent decay lifetimes on time-delayed probing for CARS thermometry. A simple procedure is presented for accurate temperature determination based on a Boltzmann distribution using delayed-probe-pulse vibrational CARS spectra of H 2 ; this procedure requires measurement at only a select handful of probe-pulse delays and requires no assumptions about sample environment.

© 2011 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
LASER APPLICATIONS TO CHEMICAL, SECURITY, AND ENVIRONMENTAL ANALYSIS

History
Original Manuscript: August 6, 2010
Revised Manuscript: October 25, 2010
Manuscript Accepted: October 25, 2010
Published: November 30, 2010

Citation
Hans U. Stauffer, Waruna D. Kulatilaka, Paul S. Hsu, James R. Gord, and Sukesh Roy, "Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2," Appl. Opt. 50, A38-A48 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-4-A38


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010). [CrossRef]
  2. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005). [CrossRef]
  3. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224 (2005). [CrossRef] [PubMed]
  4. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007). [CrossRef] [PubMed]
  5. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009). [CrossRef] [PubMed]
  6. T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35, 2040–2042 (2010). [CrossRef] [PubMed]
  7. V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40bar,” Appl. Phys. B 61, 49–57 (1995). [CrossRef]
  8. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010). [CrossRef]
  9. K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001). [CrossRef]
  10. F. Grisch, P. Bouchardy, and W. Clauss, “CARS thermometry in high pressure rocket combustors,” Aerosp. Sci. Technol. 7, 317–330 (2003). [CrossRef]
  11. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010). [CrossRef]
  12. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010). [CrossRef] [PubMed]
  13. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006). [CrossRef]
  14. T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310, 65–72 (1999). [CrossRef]
  15. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115, 5418–5426 (2001). [CrossRef]
  16. H. Skenderović, T. Buckup, W. Wohlleben, and M. Motzkus, “Determination of collisional line broadening coefficients with femtosecond time-resolved CARS,” J. Raman Spectrosc. 33, 866–871 (2002). [CrossRef]
  17. H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005). [CrossRef] [PubMed]
  18. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006). [CrossRef]
  19. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of Ultrafast Lasers for Optical Measurements in Combusting Flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008). [CrossRef]
  20. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281, 319–325 (2008). [CrossRef]
  21. H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009). [CrossRef] [PubMed]
  22. S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94, 144101 (2009). [CrossRef]
  23. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997). [CrossRef]
  24. S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. L. Hu, “Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames,” Combust. Flame 130, 261–276 (2002). [CrossRef]
  25. L. A. Rahn, R. L. Farrow, and G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0–5) Raman transitions from 295 to 1000K,” Phys. Rev. A 43, 6075–6088 (1991). [CrossRef] [PubMed]
  26. W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002). [CrossRef]
  27. V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007). [CrossRef]
  28. K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008). [CrossRef]
  29. J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000). [CrossRef]
  30. J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).
  31. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005). [CrossRef] [PubMed]
  32. D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, 2002).
  33. R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” SAND89-8206 (Sandia National Laboratories, 1989).
  34. M. Marrocco, “Comparative analysis of Herman–Wallis factors for uses in coherent anti-Stokes Raman spectra of light molecules,” J. Raman Spectrosc. 40, 741–747 (2009). [CrossRef]
  35. M. Marrocco, “Herman–Wallis factor to improve thermometric accuracy of vibrational coherent anti-Stokes Raman spectra of H2,” Proc. Combust. Inst. 32, 863–870 (2009). [CrossRef]
  36. J. C. Luthe, E. J. Beiting, and F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92(1986). [CrossRef]
  37. J. L. Dunham, “The energy levels of a rotating vibrator,” Phys. Rev. 41, 721–731 (1932). [CrossRef]
  38. G. Herzberg and L. L. Howe, “The Lyman bands of molecular hydrogen,” Can. J. Phys. 37, 636–659 (1959). [CrossRef]
  39. I. Tobias and J. T. Vanderslice, “Potential energy curves for the X1∑g+ and B1∑u+ states of hydrogen,” J. Chem. Phys. 35, 1852–1855 (1961). [CrossRef]
  40. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986). [CrossRef]
  41. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited