OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 5 — Feb. 10, 2011
  • pp: 733–737

Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions

Feng Qiu, Tadashi Narusawa, and Jie Zheng  »View Author Affiliations


Applied Optics, Vol. 50, Issue 5, pp. 733-737 (2011)
http://dx.doi.org/10.1364/AO.50.000733


View Full Text Article

Enhanced HTML    Acrobat PDF (609 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Planar waveguides have been fabricated in Nd- or Ho-doped gallium lanthanum sulfide laser glasses by 60 MeV Ar or 20 MeV N ion implantation. The refractive index profiles were reconstructed based on the results of prism coupling. The Ar implanted waveguides exhibit an approximate steplike distribution, while the N implanted ones show a “well + barrier” type. This difference can be attributed to the much lower dose of Ar ions. After annealing, the N implanted waveguides can support two modes at 1539 nm and have low propagation loss, which makes them candidates for novel waveguide lasers.

© 2011 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: November 5, 2010
Revised Manuscript: December 23, 2010
Manuscript Accepted: January 2, 2011
Published: February 8, 2011

Citation
Feng Qiu, Tadashi Narusawa, and Jie Zheng, "Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions," Appl. Opt. 50, 733-737 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-5-733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007). [CrossRef]
  2. M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass,” Appl. Phys. Lett. 90, 031108 (2007). [CrossRef]
  3. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007). [CrossRef]
  4. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14, 1797–1803(2006). [CrossRef] [PubMed]
  5. T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999). [CrossRef]
  6. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002). [CrossRef]
  7. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994). [CrossRef]
  8. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182(2008). [CrossRef]
  9. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009). [CrossRef]
  10. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005). [CrossRef]
  11. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007). [CrossRef] [PubMed]
  12. J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010). [CrossRef]
  13. F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33, 527–530 (2011). [CrossRef]
  14. F. Qiu and T. Narusawa, “Proton-implanted planar waveguide in gallium lanthanum sulphide glass,” Jpn. J. Appl. Phys. 49, 092503 (2010). [CrossRef]
  15. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002). [CrossRef]
  16. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” J. Mod. Opt. 33, 127–143(1986). [CrossRef]
  17. L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993). [CrossRef]
  18. M. D. Shinn, W. A. Sibley, M. G. Drexhave, and E. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983). [CrossRef]
  19. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009). [CrossRef]
  20. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523–1542 (2007). [CrossRef]
  21. S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005). [CrossRef]
  22. F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002). [CrossRef]
  23. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007). [CrossRef]
  24. M. S. Kamboj, G. Kaur, R. Thangaraj, and D. K. Avasthi, “Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films,” J. Phys. D 35, 477–479 (2002). [CrossRef]
  25. S. Ducharme, J. Hautala, and P. C. Taylor, “Photodarkening profiles and kinetics in chalcogenide glasses,” Phys. Rev. B 41, 12250–12259 (1990). [CrossRef]
  26. A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8, 1381–1388 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited