OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: 1234–1239

Propagation property of a nonuniformly polarized beam array in turbulent atmosphere

Pu Zhou, Xiaolin Wang, Yanxing Ma, Haotong Ma, Xiaojun Xu, and Zejin Liu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 9, pp. 1234-1239 (2011)
http://dx.doi.org/10.1364/AO.50.001234


View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A nonuniformly polarized beam array (NUBPA) is modeled by coherent superposition of a pair of orthogonally polarized spatial modes. The propagation of a NUPBA in turbulent atmosphere is investigated based on the extended Huygens–Fresnel method. An analytical expression for the intensity profile of a NUBPA in turbulent atmosphere is presented. The influence of polarization degree, intensity of turbulence, array number, and distance between adjacent elements on the intensity profile in the receiving plane is evaluated numerically and analyzed in detail.

© 2011 Optical Society of America

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 6, 2010
Revised Manuscript: October 15, 2010
Manuscript Accepted: November 28, 2010
Published: March 15, 2011

Citation
Pu Zhou, Xiaolin Wang, Yanxing Ma, Haotong Ma, Xiaojun Xu, and Zejin Liu, "Propagation property of a nonuniformly polarized beam array in turbulent atmosphere," Appl. Opt. 50, 1234-1239 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-9-1234


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35, 1542–1544 (2010). [CrossRef] [PubMed]
  2. D. C. Jones, A. J. Turner, A. M. Scott, S. M. Stone, R. G. Clark, C. Stace, and C. D. Stacey, “A multi-channel phase locked fibre bundle laser,” Proc. SPIE 7580, 75801V (2010). [CrossRef]
  3. G. Bloom, C. Larat, E. Lallier, M. Carras, and X. Marcadet, “Coherent combining of two quantum-cascade lasers in a Michelson cavity,” Opt. Lett. 35, 1917–1919 (2010). [CrossRef] [PubMed]
  4. Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88, 467–475 (2007). [CrossRef]
  5. Y. Cai, Q. Lin, H. T. Eyyuboğlu, and Y. Baykal, “Off-axis Gaussian Schell-model beam and partially coherent laser array beam in a turbulent atmosphere,” Opt. Commun. 278, 157–167 (2007). [CrossRef]
  6. X. Chu, Z. Liu, and Y. Wu, “Propagation of a general multi-Gaussian beam in turbulent atmosphere in a slant path,” J. Opt. Soc. Am. A 25, 74–49 (2008). [CrossRef]
  7. X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18, 6922–6928 (2010). [CrossRef] [PubMed]
  8. X. Li, X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Turbulence distance of radial Gaussian Schell-model array beams,” Appl. Phys. B 98, 557–565 (2010). [CrossRef]
  9. Y. Zhu, D. Zhao, and X. Du, “Propagation of stochastic Gaussian–Schell model array beams in turbulent atmosphere,” Opt. Express 16, 18437–18442 (2008). [CrossRef] [PubMed]
  10. H. T. Eyyuboğlu, Y. Baykal, and Y. Cai, “Scintillations of laser array beams,” Appl. Phys. B 91, 265–271 (2008). [CrossRef]
  11. B. Li and B. Lü, “Characterization of off-axis superposition of partially coherent beams,” J. Opt. A Pure Appl. Opt. 5, 303–307 (2003). [CrossRef]
  12. P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere,” Appl. Opt. 48, 5251–5258 (2009). [CrossRef] [PubMed]
  13. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005). [CrossRef]
  14. J. B. Shellan, “Phased-array performance degradation due to mirror misfigures, piston errors, jitter, and polarization errors,” J. Opt. Soc. Am. A 2, 555–567 (1985). [CrossRef]
  15. P. Zhou, Z. Liu, X. Xu, and Z. Chen, “Numerical analysis of the effects of aberrations on coherently combined fiber laser beams,” Appl. Opt. 47, 3350–3359 (2008). [CrossRef] [PubMed]
  16. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004). [CrossRef] [PubMed]
  17. J. Marmo, H. Injeyan, H. Komine, S. McNaught, J. Machan, and J. Sollee, “Joint high power solid state laser program advancements at Northrop Grumman,” Proc. SPIE 7195, 719507 (2009). [CrossRef]
  18. T. Wang and J. Pu, “Propagation of non-uniformly polarized beams in a turbulent atmosphere,” Opt. Commun. 281, 3617–3622 (2008). [CrossRef]
  19. Y. Gu, O. Korotsova, and G. Gbur, “Scintillation of nonuniformly polarized beam in atmospheric turbulence,” Opt. Lett. 34, 2261–2263 (2009). [CrossRef] [PubMed]
  20. J. M. Movilla, G. Piquero, R. Martinez-Herrero, and P. M. Mejias, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149, 230–234 (1998). [CrossRef]
  21. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “The irradiance of partially polarized beams in a scalar treatment,” Opt. Commun. 163, 159–163 (1999). [CrossRef]
  22. Y. Cai, Q. Lin, H. T. Eyyuboğlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16, 7665–7673 (2008). [CrossRef] [PubMed]
  23. W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17, 17829–17836 (2009). [CrossRef] [PubMed]
  24. F. Gori, M. Santarsiero, R. Borghi, and G. Piquero, “Use of the van Cittert–Zernike theorem for partially polarized sources,” Opt. Lett. 25, 1291–1293 (2000). [CrossRef]
  25. Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89, 041117(2006). [CrossRef]
  26. Y. Cai and S. He, “Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere,” Opt. Lett. 31, 568–570 (2006). [CrossRef] [PubMed]
  27. S. C. H. Wang and M. A. Plonus, “Optical beam propagation for a partially coherent source in the turbulent atmosphere,” J. Opt. Soc. Am. 69, 1297–1304 (1979). [CrossRef]
  28. J. C. Leader, “Atmospheric propagation of partially coherent radiation,” J. Opt. Soc. Am. 68, 175–185 (1978). [CrossRef]
  29. X. Ji, E. Zhang, and B. Lü, “Superimposed partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. B 25, 825–833 (2008). [CrossRef]
  30. X. Li, X. Chen, and X. Ji, “Influence of atmospheric turbulence on the propagation of superimposed partially coherent Hermite–Gaussian beams,” Opt. Commun. 282, 7–13(2009). [CrossRef]
  31. H. T. Eyyuboğlu, Y. Baykal, and E. Sermutlu, “Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere,” Opt. Commun. 265, 399–405 (2006). [CrossRef]
  32. M. Salem, T. Shirai, A. Dogariu, and E. Wolf, “Long-distance propagation of partially coherent beams through atmospheric turbulence,” Opt. Commun. 216, 261–265 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited