OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: C373–C381

Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings

S. Roger Qiu, Justin E. Wolfe, Anthony M. Monterrosa, Michael D. Feit, Thomas V. Pistor, and Christopher J. Stolz  »View Author Affiliations


Applied Optics, Vol. 50, Issue 9, pp. C373-C381 (2011)
http://dx.doi.org/10.1364/AO.50.00C373


View Full Text Article

Enhanced HTML    Acrobat PDF (1711 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Growing laser damage sites on multilayer high-reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with predesigned benign mitigation structures. By mitigating the weakest site on the optic, the large-aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite-difference time-domain method was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore, the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarized wave at a range of incident angles between 30 ° and 45 ° .

© 2011 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(230.7370) Optical devices : Waveguides
(310.0310) Thin films : Thin films

History
Original Manuscript: August 2, 2010
Revised Manuscript: December 17, 2010
Manuscript Accepted: December 27, 2010
Published: February 7, 2011

Citation
S. Roger Qiu, Justin E. Wolfe, Anthony M. Monterrosa, Michael D. Feit, Thomas V. Pistor, and Christopher J. Stolz, "Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings," Appl. Opt. 50, C373-C381 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-9-C373


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997). [CrossRef]
  2. J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997). [CrossRef]
  3. F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996). [CrossRef]
  4. S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010). [CrossRef] [PubMed]
  5. J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009). [CrossRef]
  6. P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006). [CrossRef]
  7. M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008). [CrossRef]
  8. P. W. Baumeister, Optical Coating Technology (SPIE, 2004). [CrossRef]
  9. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006). [CrossRef] [PubMed]
  10. Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).
  11. Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011). [CrossRef]
  12. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009). [CrossRef]
  13. D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.
  14. S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993). [CrossRef]
  15. T. V. Pistor, Electromagnetic Simulation and Modeling with Applications in Lithography (University of California, 2001).
  16. M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005). [CrossRef]
  17. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.
  18. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited