OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1436–1445

Variations in signal intensity with periodical temperature changes in vivo in rat brain: analysis using wide-field optical coherence tomography

Manabu Sato, Daisuke Nomura, Tetsushi Kitano, Takashi Tsunenari, and Izumi Nishidate  »View Author Affiliations


Applied Optics, Vol. 51, Issue 10, pp. 1436-1445 (2012)
http://dx.doi.org/10.1364/AO.51.001436


View Full Text Article

Enhanced HTML    Acrobat PDF (844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a previous study, we reported measurements of three-dimensional (3D) optical coherence tomography (OCT) images through a thinned skull by reducing temperatures from 28 °C to 18 °C in vivo in the rat brain to show negative correlation coefficients (CCs) between ratios of signal intensity (RSI) and temperature for applications to monitoring brain viability. In this study, using the same OCT system, we measured 3D OCT images of the rat brain by periodically changing tissue temperatures from 20 °C to 32 °C in vivo. In the evaluation of CCs among RSI, temperature, and heart rate, the largest number of periods was four, and the longest measurement time was 570 min. Averaged CCs between RSI and temperature, and between RSI and heart rate, were 0.42 to 0.50 and 0.48 to 0.64, respectively. RSI reversibly changed subsequent variations of temperatures and finally increased rapidly just before cardiac arrest. These results indicate that RSI could correspond to decreases in viability because of local ischemia and recovery.

© 2012 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 8, 2011
Revised Manuscript: November 2, 2011
Manuscript Accepted: January 10, 2012
Published: March 21, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Manabu Sato, Daisuke Nomura, Tetsushi Kitano, Takashi Tsunenari, and Izumi Nishidate, "Variations in signal intensity with periodical temperature changes in vivo in rat brain: analysis using wide-field optical coherence tomography," Appl. Opt. 51, 1436-1445 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-10-1436


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  2. B. Bouma and J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  3. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004). [CrossRef]
  4. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).
  5. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
  6. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
  7. M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85–95 (2009). [CrossRef]
  8. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. 87, 6082–6086 (1990).
  9. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
  10. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003). [CrossRef]
  11. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009). [CrossRef]
  12. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006). [CrossRef]
  13. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008). [CrossRef]
  14. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009). [CrossRef]
  15. I. Nishidate, K. Yoshida, and M. Sato, “Changes in optical properties of rat cerebral cortical slices during oxygen glucose deprivation,” Appl. Opt. 49, 6617–6623 (2010). [CrossRef]
  16. K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exp. Transl. Stroke Med. 1, 6 (2009). [CrossRef]
  17. M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009). [CrossRef]
  18. M. Sato, D. Nomura, T. Tsunenari, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest maintaining primary temperature by wide-field optical coherence tomography,” Appl. Opt. 49, 4851–4858 (2010). [CrossRef]
  19. M. Sato, D. Nomura, T. Tsunenari, and I. Nishidate, “In vivo rat brain measurement of changes in signal intensity depth profiles as a function of temperature using wide-field optical coherence tomography,” Appl. Opt. 49, 5686–5696 (2010). [CrossRef]
  20. F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008). [CrossRef]
  21. S. G. Lomber, B. R. Payne, and J. A. Horel, “The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function,” J. Neurosci. Methods 86, 179–194 (1999). [CrossRef]
  22. M. H. Khachaturian, J. Arsenault, L. B. Ekstrom, D. S. Tuch, and W. Vanduffel, “Focal reversible deactivation of cerebral metabolism affects water diffusion,” Magn. Reson. Med. 60, 1178–1189 (2008). [CrossRef]
  23. X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008). [CrossRef]
  24. L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).
  25. N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).
  26. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).
  27. A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959). [CrossRef]
  28. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064 (2002). [CrossRef]
  29. S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006). [CrossRef]
  30. G. Paxinos, The Rat Nervous System (Elsevier, 2004).
  31. E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).
  32. T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited