OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1516–1520

Estimation of measurement uncertainties using virtual fringe projection technique

Klaus Haskamp, Markus Kästner, Christoph Ohrt, and Eduard Reithmeier  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. 1516-1520 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the main tasks of the quality test is the inspection of all relevant geometric parts related to the predefined tolerance range, whereas the uncertainty of measurement has to be less than the tolerance range. The reachable uncertainty of measurement can be determined using method A of the ISO Guide to the Expression of Uncertainty in Measurement (GUM), which is expensive and time consuming and has to be carried out for each individual metrologic case. Furthermore, it is possible to check the suitability of the measurement system for the planned inspection using virtual measurement techniques and therewith to reduce the time and money spent. This means that the uncertainty of measurement is estimated using method B of the GUM. In this paper, a virtual fringe projection system is used for the estimation of the uncertainty of measurement, which is compared with the uncertainty of measurement determined with a real measurement system using method A of the GUM. With the presented method, it is possible to calculate an optimal measurement position within the measurement volume, based on a minimum uncertainty of measurement. Thereby, the influence of the operator related to the uncertainty can be significantly reduced.

© 2012 Optical Society of America

OCIS Codes
(350.4600) Other areas of optics : Optical engineering
(350.4800) Other areas of optics : Optical standards and testing
(080.1753) Geometric optics : Computation methods
(080.2208) Geometric optics : Fabrication, tolerancing

Original Manuscript: October 5, 2011
Revised Manuscript: December 21, 2011
Manuscript Accepted: January 3, 2012
Published: March 28, 2012

Klaus Haskamp, Markus Kästner, Christoph Ohrt, and Eduard Reithmeier, "Estimation of measurement uncertainties using virtual fringe projection technique," Appl. Opt. 51, 1516-1520 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Schmitt, F. Koerfer, O. Sawodny, J. Zimmermann, R. Krüger-Sehm, M. Xu, T. Dziomba, L. Koenders, G. Goch, A. Tausendfreund, S. Patzelt, S. Simon, L. Rockstroh, C. Bellon, A. Staude, P. Woias, F. Goldschmidtböing, and M. Rabold, “Virtuelle Messgeräte: Definition und Stand der Entwicklung,” Tech. Mess. 75, 298–310 (2008). [CrossRef]
  2. Y. Hu, Q. Yang, and P. Wei, “Development of a novel virtual coordinate measuring machine,” in I2MTC—International Instrumentation and Measurement Technology Conference (IEEE, 2009), pp. 230–233.
  3. M. Trenk, M. Franke, and H. Schwenke, “The ‘Virtual CMM’ a software tool for uncertainty evaluation—practical application in an accredited calibration lab,” in ASPE Proceedings on Uncertainty Analysis in Measurement and Design (ASPE, 2004), pp. 1–6.
  4. C. L. Giusca, A. B. Forbes, and R. K. Leach, “A virtual machine-based uncertainty evaluation for a traceable areal surface texture measuring instrument,” Measurement 44, 988–993 (2011). [CrossRef]
  5. C. L. Giusca, A. B. Forbes, and R. K. Leach, “Comparison between GUM, Monte Carlo and Bayesian uncertainty evaluation approaches for an areal surface texture measuring instrument,” in Proceedings of the International Congress of Metrology (Dutch Metrology Institute, 2009), Vol. 14, pp. 988–993.
  6. T. Böttner, “Untersuchungen zur Messunsicherheit mit Hilfe eines virtuellen Streifenprojektionssystems,” Ph.D. thesis (Leibniz Universität Hannover, 2008).
  7. A. Weckenmann, W. Hartmann, and J. Weickmann, “Model and simulation of fringe projection measurements as part of an assistance system for multi component fringe projection sensors,” Proc. SPIE 7102, 71020N (2008). [CrossRef]
  8. A. Weckenmann, W. Hartmann, and J. Weickmann, “Multi-component fringe projection sensors: Assistance system for short and robust inspection processes,” in Proceedings of the 2008 NCSL International Workshop and Symposium (NCSL, 2008), pp. 43–49.
  9. J. Weickmann, A. Weckenmann, and P. F. Brenner, “Automatic, task-sensitive and simulation-based optimization of fringe projection measurements,” Key Eng. Mater. 437, 439–443 (2010). [CrossRef]
  10. International Organization for Standardization, GUM—Guide to the Expression of Uncertainty in Measurement (DIN/Beuth-Verlag, 1995).
  11. K. Haskamp, M. Kästner, R. Gillhaus, and E. Reithmeier, “Messunsicherheitsanalyse mittels virtueller Streifen-projektionstechnik auf Grundlage von Polygonmodellen,” Tech. Mess. 78, 60–68 (2011). [CrossRef]
  12. K. Haskamp, M. Kästner, and E. Reithmeier, “Accurate calibration of a fringe projection system by considering telecentricity,” Proc. SPIE 8082, 80821B (2011). [CrossRef]
  13. S. Kammel, “Deflektometrische Untersuchung spiegelnd reflektierender Freiformflächen,” Ph.D. thesis (Universität Karlsruhe, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited