OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1598–1604

Generalized data reduction approach for aspheric testing in a non-null interferometer

Chao Tian, Yongying Yang, and Yongmo Zhuo  »View Author Affiliations


Applied Optics, Vol. 51, Issue 10, pp. 1598-1604 (2012)
http://dx.doi.org/10.1364/AO.51.001598


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Data reduction in non-null tests is difficult due to the presence of retrace error. We propose a simple yet effective data reduction approach for aspheric testing in a non-null interferometer. The new approach gives figure error of the aspheric by just subtracting the theoretical wavefront and first-order errors from the real wavefront obtained in the non-null interferometer. Precise prediction of the theoretical wavefront can be achieved by accurate calibration of the partial compensation system. The approach can be considered a generalization of the traditional data processing method in null tests, and errors that may affect its accuracy are discussed. A set of experiments have been carried out to demonstrate its validity and feasibility.

© 2012 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(220.1250) Optical design and fabrication : Aspherics
(220.4840) Optical design and fabrication : Testing

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 25, 2011
Revised Manuscript: December 13, 2011
Manuscript Accepted: December 30, 2011
Published: March 30, 2012

Citation
Chao Tian, Yongying Yang, and Yongmo Zhuo, "Generalized data reduction approach for aspheric testing in a non-null interferometer," Appl. Opt. 51, 1598-1604 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-10-1598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Malacara, Optical Shop Testing, 3rd ed. (Wiley, 2007).
  2. S. Reichelt, C. Pruss, and H. J. Tiziani, “Absolute interferometric test of aspheres by use of twin computer-generated holograms,” Appl. Opt. 42, 4468–4479 (2003). [CrossRef]
  3. B. Dörband and H. J. Tiziani, “Testing aspheric surfaces with computer-generated holograms: analysis of adjustment and shape errors,” Appl. Opt. 24, 2604–2611 (1985). [CrossRef]
  4. J. C. Wyant and V. P. Bennett, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972). [CrossRef]
  5. M. F. Küchel, “Interferometric measurement of rotationally symmetric aspheric surfaces,” Proc. SPIE 7389, 738916 (2009). [CrossRef]
  6. P. Murphy, J. Fleig, G. Forbes, D. Miladinovic, G. DeVries, and S. O’Donohue, “Subaperture stitching interferometry for testing mild aspheres,” Proc. SPIE 6293, 62930J (2006). [CrossRef]
  7. A. E. Lowman and J. E. Greivenkamp, “Modeling an interferometer for non-null testing of aspheres,” Proc. SPIE 2536, 139–147 (1995). [CrossRef]
  8. J. E. Greivenkamp and R. O. Gappinger, “Design of a non-null interferometer for aspheric wavefronts,” Appl. Opt. 43, 5143–5151 (2004). [CrossRef]
  9. J. Pfund, N. Lindlein, and J. Schwider, “Non-null testing of rotationally symmetric aspheres: a systematic error assessment,” Appl. Opt. 40, 439–446 (2001). [CrossRef]
  10. E. Garbusi, C. Pruss, and W. Osten, “Interferometer for precise and flexible asphere testing,” Opt. Lett. 33, 2973–2975 (2008). [CrossRef]
  11. O. Kwon, J. C. Wyant, and C. R. Hayslett, “Rough surface interferometry at 10.6 µm,” Appl. Opt. 19, 1862–1869 (1980). [CrossRef]
  12. K. Creath, Y.-Y. Cheng, and J. C. Wyant, “Contouring aspheric surfaces using two-wavelength phase-shifting interferometry,” Opt. Acta 32, 1455–1464 (1985). [CrossRef]
  13. C. Tian, Y. Yang, Y. Luo, D. Liu, and Y. Zhuo, “Study on phase retrieval of a single closed fringe interferogram in radial shearing interferometer for aspheric test,” Proc. SPIE 7656, 765612 (2010). [CrossRef]
  14. J. E. Greivenkamp, “Sub-Nyquist interferometry,” Appl. Opt. 26, 5245–5258 (1987). [CrossRef]
  15. J. E. Greivenkamp, A. E. Lowman, and R. J. Palum, “Sub-Nyquist interferometry: implementation and measurement capability,” Opt. Eng. 35, 2962–2969 (1996). [CrossRef]
  16. R. E. Parks, C. J. Evans, P. J. Sullivan, L. Shao, and B. E. Loucks, “Measurements of the LIGO Pathfinder optics,” Proc. SPIE 3134, 95–111 (1997). [CrossRef]
  17. M. Tricard, G. Forbes, and P. Murphy, “Subaperture metrology technologies extend capabilities in optics manufacturing,” Proc. SPIE 5965, 59650B (2005). [CrossRef]
  18. A. E. Lowman and J. E. Greivenkamp, “Interferometer errors due to the presence of fringes,” Appl. Opt. 35, 6826–6828 (1996). [CrossRef]
  19. R. O. Gappinger and J. E. Greivenkamp, “Iterative reverse optimization procedure for calibration of aspheric wave-front measurements on a non-null interferometer,” Appl. Opt. 43, 5152–5161 (2004). [CrossRef]
  20. C. Tian, Y. Yang, T. Wei, and Y. Zhuo, “Non-null interferometer simulation for aspheric testing based on ray tracing,” Appl. Opt. 50, 3559–3569 (2011). [CrossRef]
  21. P. E. Murphy, T. G. Brown, and D. T. Moore, “Measurement and calibration of interferometric imaging aberrations,” Appl. Opt. 39, 6421–6429 (2000). [CrossRef]
  22. A. E. Lowman and J. E. Greivenkamp, “Interferometer-induced wavefront errors when testing in a non-null configuration,” Proc. SPIE 2004, 173–181 (1994). [CrossRef]
  23. C. Huang, “Propagation errors in precision Fizeau interferometry,” Appl. Opt. 32, 7016–7021 (1993). [CrossRef]
  24. P. E. Murphy, T. G. Brown, and D. T. Moore, “Interference imaging for aspheric surface testing,” Appl. Opt. 39, 2122–2129 (2000). [CrossRef]
  25. D. Liu, Y. Yang, Y. Luo, C. Tian, Y. Shen, and Y. Zhuo, “Non-null interferometric aspheric testing with partial null lens and reverse optimization,” Proc. SPIE 7426, 74260M (2009). [CrossRef]
  26. H. H. Hopkins and H. J. Tiziani, “A theoretical and experimental study of lens centering errors and their influence on optical image quality,” Br. J. Appl. Phys. 17, 33 (1966). [CrossRef]
  27. M. Rimmer, “Analysis of perturbed lens systems,” Appl. Opt. 9, 533–537 (1970). [CrossRef]
  28. E. Garbusi and W. Osten, “Perturbation methods in optics: application to the interferometric measurement of surfaces,” J. Opt. Soc. Am. A 26, 2538–2549 (2009). [CrossRef]
  29. Y. Yang, D. Liu, G. Xin, C. Tian, Y. Luo, Y. Shen, and Y. Zhuo, “Research of precision interference locating method for a partial null compensator at aspheric testing,” Proc. SPIE 7426, 74260R (2009). [CrossRef]
  30. S. Reichelt, C. Pruss, and H. J. Tiziani, “New design techniques and calibration methods for CGH-null testing of aspheric surfaces,” Proc. SPIE 4778, 158–168 (2002). [CrossRef]
  31. TRIOPTICS, SpectroMaster, http://www.trioptics.com/spectromaster/description.php .
  32. TRIOPTICS, Spherometers, http://www.trioptics.com/spherometers/description.php .
  33. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited