OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: C117–C124

New scanning technique for the optical vortex microscope

Ireneusz Augustyniak, Agnieszka Popiołek-Masajada, Jan Masajada, and Sławomir Drobczyński  »View Author Affiliations


Applied Optics, Vol. 51, Issue 10, pp. C117-C124 (2012)
http://dx.doi.org/10.1364/AO.51.00C117


View Full Text Article

Enhanced HTML    Acrobat PDF (822 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element—a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

© 2012 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.5810) Microscopy : Scanning microscopy
(080.4865) Geometric optics : Optical vortices

History
Original Manuscript: January 18, 2012
Manuscript Accepted: February 8, 2012
Published: March 28, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Ireneusz Augustyniak, Agnieszka Popiołek-Masajada, Jan Masajada, and Sławomir Drobczyński, "New scanning technique for the optical vortex microscope," Appl. Opt. 51, C117-C124 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-10-C117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye, Natural Focusing and Fine Structure of Light(Institute of Physics, 1999).
  2. M. Vasnetsov and K. Staliunas, eds., Optical Vortices(Nova Science, 1999).
  3. M. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  4. A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solutions,” Prog. Opt. 47, 291–391 (2005). [CrossRef]
  5. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009). [CrossRef]
  6. V. P. Tychinsky, I. N. Maslov, V. L. Pankov, and D. V. Ublinsky, “Computerized phase microscope for investigation of submicron structures,” Opt. Commun. 74, 37–40 (1989). [CrossRef]
  7. V. P. Tychinsky, “On superresolution of phase objects,” Opt. Commun. 74, 41–45 (1989). [CrossRef]
  8. V. P. Tychinsky and C. H. Velzel, “Superresolution in microscopy,” in Current Trends in Optics (Academic, 1994), Chap. 18.
  9. C. H. Velzel and J. Masajada, “Superresolution phase image microscope,” Opt. Appl. 39, 293–300 (1999).
  10. M. Totzeck and H. J. Tiziani, “Phase-singularities in 2D diffraction fields and interference microscopy,” Opt. Commun. 138, 365–382 (1997). [CrossRef]
  11. T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066611 (2001). [CrossRef]
  12. L. E. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1–8 (2006). [CrossRef]
  13. B. Spector, A. Normatov, and J. Shamir, “Experimental validation of 20 nm sensitivity of singular beam microscopy,” Proc. SPIE 6616, 661622 (2007). [CrossRef]
  14. B. Spector, A. Normatov, and J. Shamir, “Singular beam microscopy,” Appl. Opt. 47, A78–87 (2008). [CrossRef]
  15. B. Spektor, A. Normatov, and J. Shamir, “Singular beam scanning microscopy: preliminary experimental results,” Opt. Eng. 49, 048001 (2010). [CrossRef]
  16. J. Masajada, M. Leniec, E. Jankowska, H. Thienpont, H. Ottevaere, and V. Gomez, “Deep microstructure topography characterization with optical vortex interferometer,” Opt. Express 16, 19179–19191 (2008). [CrossRef]
  17. J. Masajada, M. Leniec, S. Drobczyński, H. Thienpont, and B. Kress, “Micro-step localization using double charge optical vortex interferometer,” Opt. Express 17, 16144–16159 (2009). [CrossRef]
  18. J. Masajada, M. Leniec, and I. Augustyniak, “Optical vortex scanning inside the Gaussian beam,” J. Opt. 13, 035714 (2011). [CrossRef]
  19. S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992). [CrossRef]
  20. G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31, 2042–2044 (2006). [CrossRef]
  21. W. D. Furlan, F. Gimenez, A. Calatayud, and J. A. Monsoriu, “Devil’s vortex-lenses,” Opt. Express 17, 21891–21896(2009). [CrossRef]
  22. A. N. Khoroshun, “Optimal linear phase mask for the singular beam synthesis from a Gaussian beam and the scheme of its experimental realization,” J. Mod. Opt. 57, 1542–1549 (2010). [CrossRef]
  23. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992). [CrossRef]
  24. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinstein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quant. Electron. 24, 951–962 (1992). [CrossRef]
  25. A. Ya. Bekshaev and A. I. Karamoch, “Displacements and deformations of a vortex light beam produced by the diffraction grating with embedded phase singularity,” Opt. Commun. 281, 3597–3610 (2008). [CrossRef]
  26. A. Ya. Bekshaev and S. V. Sviridova, “Effects of misalignments in the optical vortex transformation performed by holograms with embedded phase singularity,” Opt. Commun. 283, 4866–4876 (2010). [CrossRef]
  27. R. K. Singh, P. Senthilkumaran, and K. Singh, “Tight focusing of vortex beams in presence of primary astigmatism,” J. Opt. Soc. Am. A 26, 576–588 (2009). [CrossRef]
  28. R. K. Singh, P. Senthilkumaran, and K. Singh, “Structure of a tightly focused vortex beam in the presence of primary coma,” Opt. Commun. 282, 1501–1510 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited