OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: C13–C16

Internal energy flows and instantaneous field of a monochromatic paraxial light beam

Aleksandr Ya. Bekshaev  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. C13-C16 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is known that the orbital angular momentum of a paraxial light beam is related to the rotational features of the instantaneous optical-frequency oscillation pattern within the beam cross section [J. Opt. A 11, 094004 (2009)]. Now this conclusion is generalized: any identifiable directed motion of the instantaneous two-dimensional pattern of the field oscillations (“running” behavior of the instant oscillatory pattern) corresponds to the transverse energy flow in the experimentally observable time-averaged field. The transverse orbital flow density can be treated as a natural geometric and kinematic characteristic of this running behavior.

© 2012 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2160) Physical optics : Energy transfer
(140.3295) Lasers and laser optics : Laser beam characterization
(080.4865) Geometric optics : Optical vortices
(260.6042) Physical optics : Singular optics

Original Manuscript: November 22, 2011
Manuscript Accepted: December 16, 2011
Published: March 14, 2012

Aleksandr Ya. Bekshaev, "Internal energy flows and instantaneous field of a monochromatic paraxial light beam," Appl. Opt. 51, C13-C16 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lekner, “Phase and transport velocities in particle and electromagnetic beams,” J. Opt. A 4, 491–499 (2002). [CrossRef]
  2. J. Lekner, “Polarization of tightly focused laser beams,” J. Opt. A 5, 6–14 (2003). [CrossRef]
  3. A. Y. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31, 2199–2201 (2006). [CrossRef]
  4. I. Mokhun, A. Mokhun, and J. Viktorovskaya, “Singularities of the Poynting vector and the structure of optical field,” Proc. SPIE 6254, 625409 (2006). [CrossRef]
  5. I. I. Mokhun, “Introduction to linear singular optics,” in Optical Correlation Techniques and Applications (SPIE, 2007), pp. 1–132.
  6. A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007). [CrossRef]
  7. M. V. Berry, “Optical currents,” J. Opt. A 11, 094001 (2009). [CrossRef]
  8. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011). [CrossRef]
  9. A. Y. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407 (2006). [CrossRef]
  10. A. Y. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A 11, 094003 (2009). [CrossRef]
  11. A. Ya. Bekshaev, “Transverse rotation of the momentary field distribution and the orbital angular momentum of a light beam,” http://arXiv.org/abs/0812.0888 (accessed Feb. 17, 2012).
  12. A. Y. Bekshaev, “Transverse rotation of the instantaneous field distribution and the orbital angular momentum of a light beam,” J. Opt. A 11, 094004 (2009). [CrossRef]
  13. M. Lax, W. H. Louisell, and B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  14. A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Science, 2008).
  15. L. Allen, M. V. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

Supplementary Material

» Media 1: AVI (555 KB)     
» Media 2: AVI (744 KB)     
» Media 3: AVI (704 KB)     
» Media 4: AVI (660 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited