OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: C198–C207

High-intensive femtosecond singular pulses in Kerr dielectrics

Oleg Khasanov, Tatyana Smirnova, Olga Fedotova, Grigory Rusetsky, and Oleg Romanov  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. C198-C207 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear dynamics of a high-power femtosecond singular pulse in Kerr media are analyzed numerically upon optically induced ionization. We examine the plasma inertia impact to stable propagation of optical vortices. Multifoci behavior of vortices in medium are revealed. Next we numerically demonstrate that inertial character of plasma formation provides a quasi-soliton regime of vortex propagation resistant to symmetry-breaking perturbation.

© 2012 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.5950) Physical optics : Self-focusing
(320.2250) Ultrafast optics : Femtosecond phenomena
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

Original Manuscript: December 8, 2011
Manuscript Accepted: January 4, 2012
Published: March 30, 2012

Oleg Khasanov, Tatyana Smirnova, Olga Fedotova, Grigory Rusetsky, and Oleg Romanov, "High-intensive femtosecond singular pulses in Kerr dielectrics," Appl. Opt. 51, C198-C207 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Optics 42, 219–276 (2001).
  2. L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Optics 39, 291–372 (1999). [CrossRef]
  3. J. Yin, W. Gao, and Y. Zhu, “Generation of dark hollow beams and their applications,” Prog. Optics 45, 119–204 (2003). [CrossRef]
  4. E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of plasma-based accelerator concepts,” IEEE Trans. Plasma Sci. 24, 252–288 (1996). [CrossRef]
  5. J. P. Torres and L. Torner, eds., Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley, 2011).
  6. Y. A. Egorov, T. A. Fadeyeva, and A. V. Volyar, “Fine structure of singular beams in crystals: colours and polarization,” J. Opt. Pure Appl. Opt. 6, S217–S228 (2004). [CrossRef]
  7. C. Alexeyev, A. Volyar, and M. Yavorsky, “Fiber optical vortices,” in Lasers, Optics and Electro-Optics Research Trends, L. I. Chen, ed. (Nova Science, 2007), 131–223.
  8. A. Desyatnikov, A. Maimistov, and B. Malomed, “Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity,” Phys. Rev. E 61, 3107–3113(2000). [CrossRef]
  9. I. Towers, A. V. Buryak, R. A. Sammut, B. A. Malomed, L. C. Crasovan, and D. Mihalache, “Stability of spinning ring solitons in the cubic-quintic nonlinear Schroedinger equation,” Phys. Lett. A 288, 292–298 (2001). [CrossRef]
  10. B. A. Malomed, L.-C. Crasovan, and D. Mihalache, “Stability of vortex solitons in the cubic-quintic model,” Physica D 161, 187–201 (2002). [CrossRef]
  11. Y.-F. Chen, K. Beckwitt, F. Wise, and B. A. Malomed, “Criteria for the experimental observation of multidimensional optical solitons in saturable media,” Phys. Rev. E 70, 046610-1 (2004).
  12. D. V. Skryabin and W. J. Firth, “Generation and stability of optical bullets in quadratic nonlinear media,” Opt. Commun. 148, 79–84 (1998). [CrossRef]
  13. D. E. Edmundson, “Unstable higher modes of a three-dimensional nonlinear Schrödinger equation,” Phys. Rev. E 55, 7636–7644 (1997). [CrossRef]
  14. D. V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J. P. Torres, and C. Cojocaru, “Observation of azimuthal modulational instability and formation of patterns of optical solitons in a quadratic nonlinear crystal,” Opt. Lett. 23, 1444–1446(1998). [CrossRef]
  15. M. S. Bigelow, P. Zerom, and R. W. Boyd, “Breakup of ring beams carrying orbital angular momentum in sodium vapor,” Phys. Rev. Lett. 92, 083902-1–4 (2004). [CrossRef]
  16. D. Buccoliero, S. Lopez-Aguayo, S. Skupin, A. S. Desyatnikov, O. Bang, W. Krolikowski, and Y. S. Kivshar, “Spiraling solitons and multipole localized modes in nonlocal nonlinear media,” Physica B 394, 351–356 (2007). [CrossRef]
  17. S. Skupin, O. Bang, D. Edmundson, and W. Krolikowski, “Stability of two-dimensional spatial solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 066603-1–7 (2006). [CrossRef]
  18. A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulation and experiment,” J. Opt. Soc. Am. B 19, 1117–1131 (2002). [CrossRef]
  19. L. Berge and A. Couairon, “Nonlinear propagation of self-guided ultra-short pulses in ionized gases,” Phys. Plasmas 7, 210–230 (2000). [CrossRef]
  20. F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215(2003). [CrossRef]
  21. L. Berge and A. Couairon, “Gas-induced solitons,” Phys. Rev Lett. 86, 1003–1006 (2001). [CrossRef]
  22. N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Femtosecond pulse propagation in air: variational analysis,” Phys. Rev. E 61, 4540–4549 (2000). [CrossRef]
  23. R. A. Vlasov, O. K. Khasanov, and T. V. Smirnova, “Evolution of tubular singular pulsed beams in a nonlinear dielectric medium upon ionization,” Quantum Electron. 35, 947–952 (2005). [CrossRef]
  24. V. Skarka, N. B. Aleksic, and V. I. Berezhiani, “Evolution of singular optical pulses towards vortex solitons and filamentation in air,” Phys. Lett. A 319, 317–324 (2003). [CrossRef]
  25. A. Vinçotte and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901-1–14 (2005). [CrossRef]
  26. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowitcz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601-1–4 (2002). [CrossRef]
  27. Z. Wu, H. Jiang, H. Yang, and Q. Gong, “The refocusing behaviour of a focused femtosecond laser pulse in fused silica,” J. Opt.-Pure Appl. Opt. 5, 102–107 (2003). [CrossRef]
  28. A. A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, 2001).
  29. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited