OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 2045–2050

Measurement of nonlinear refractive index coefficient using emission spectrum of filament induced by gigawatt-femtosecond pulse in BK7 glass

Xing Lu, Qingcao Liu, Zuoye Liu, Shaohua Sun, Pengji Ding, Baowei Ding, and Bitao Hu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 12, pp. 2045-2050 (2012)
http://dx.doi.org/10.1364/AO.51.002045


View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A beam of 33 fs laser pulse with peak power of 15–40 GW was employed to explore a convenient method to determine the nonlinear refractive index coefficient of an optical glass. It is rare to investigate nonlinearities of optical glass with such an extreme ultrashort and powerful laser pulse. According to our method, only a single beam and a few experimental apparatuses are necessary to measure the nonlinear refractive index coefficient. The results from our method are in reasonable agreement with the others, which demonstrates that this new method works well, and the nonlinear refractive index coefficient is independent of measuring technology. Meanwhile, according to our results and those obtained by others in different laser power ranges, it seems that the nonlinear refractive index coefficient has a weak dependence on the laser peak power.

© 2012 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(260.5950) Physical optics : Self-focusing

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 11, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: January 14, 2012
Published: April 16, 2012

Citation
Xing Lu, Qingcao Liu, Zuoye Liu, Shaohua Sun, Pengji Ding, Baowei Ding, and Bitao Hu, "Measurement of nonlinear refractive index coefficient using emission spectrum of filament induced by gigawatt-femtosecond pulse in BK7 glass," Appl. Opt. 51, 2045-2050 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-12-2045


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83, 031802(R) (2011). [CrossRef]
  2. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, “Self-Focusing and defocusing in waveguide arrays,” Phys. Rev. Lett. 86, 3296–3299 (2001). [CrossRef]
  3. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000). [CrossRef]
  4. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
  5. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25, 335–337 (2000). [CrossRef]
  6. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003). [CrossRef]
  7. C.-H. Fan and J. P. Longtin, “Modeling optical breakdown in dielectrics during ultrafast laser processing,” Appl. Opt. 40, 3124–3130 (2001). [CrossRef]
  8. P. Polynkin and J. V. Moloney, “Optical breakdown of air triggered by femtosecond laser filaments,” Appl. Phys. Lett. 99, 151103 (2011). [CrossRef]
  9. H. Wang, C. Fan, P. Zhang, C. Qiao, J. Zhang, and H. Ma, “Dynamics of femtosecond filamentation with higher-order Kerr response,” J. Opt. Soc. Am. B 28, 2081–2086 (2011). [CrossRef]
  10. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004). [CrossRef]
  11. B. Shim, S. E. Schrauth, C. J. Hensley, L. T. Vuong, P. Hui, A. A. Ishaaya, and A. L. Gaeta, “Controlled interactions of femtosecond light filaments in air,” Phys. Rev. A 81, 061803(R) (2010). [CrossRef]
  12. A. A. Zozulya, “Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999). [CrossRef]
  13. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–641, (1999). [CrossRef]
  14. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998). [CrossRef]
  15. M. R. Junnarker, “Short pulse propagation in tight focusing conditions,” Opt. Commun. 195, 273–292 (2001). [CrossRef]
  16. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005). [CrossRef]
  17. W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13, 5750–5755 (2005). [CrossRef]
  18. Y.-H. Chen, S. Varma, I. Alexeev, and H. M. Milchberg, “Measurement of transient nonlinear refractive index in gases using xenon supercontinuum single-shot spectral interferometry,” Opt. Express 15, 7458–7467 (2007). [CrossRef]
  19. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996). [CrossRef]
  20. G. Y. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512(1984). [CrossRef]
  21. O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett. 22, 1332–1334 (1997). [CrossRef]
  22. O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozabek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267, 511–523 (2006). [CrossRef]
  23. W. Gawlik, R. Shuker, and A. Gallagher, “Temporal character of pulsed-laser cone emission,” Phys. Rev. A 64, 021801(R) (2001). [CrossRef]
  24. A. Feldman, D. Horowitz, and R. M. Waxler, “Mechanisms for self-focusing in optical glasses,” IEEE J. Quantum Electron. 9, 1054–1061 (1973). [CrossRef]
  25. J.-G. Kazem and H. Masalehdan, “Modeling of nonlinear responses in BK7 glass under irradiation of femtosecond laser pulses,” Opt. Quantum Electron. 41, 47–53 (2009). [CrossRef]
  26. J.-M. Ménard, M. Betz, I. Sigal, and H. M. van Driel, “Single-beam differential z-scan technique,” Appl. Opt. 46, 2119–2122 (2007). [CrossRef]
  27. C. R. Mendonça, L. Misoguti, and S. C. Zilio, “Measurements with Fourier analysis in ion-doped solids,” Appl. Phys. Lett. 71, 2094–2096 (1997). [CrossRef]
  28. M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, B. Hsieh, and U. Scherf, “Mixing measurements of real and imaginary conjugated polymers,” J. Opt. Soc. Am. B 15, 817–825 (1998). [CrossRef]
  29. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987). [CrossRef]
  30. D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: Application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976). [CrossRef]
  31. A. Owyoung, “Ellipse rotation studies in laser host materials,” IEEE J. Quantum Electron. 9, 1064–1069 (1973). [CrossRef]
  32. P. Samineni, Z. Perret, W. S. Warren, and M. C. Fischer, “Measurements of nonlinear refractive index in scattering media,” Opt. Express 18, 12727–12735 (2010). [CrossRef]
  33. M. Falconieri, E. Palange, and H. L. Fragnito, “Achievement of phase distortion sensitivity in the measurement of optical nonlinearities by using a modulated Z-scan technique,” J. Opt. A 4, 404–407 (2002). [CrossRef]
  34. V. P. Kandidov, O. G. Kasareva, and A. A. Koitun, “Nonlinear-optical transformation of a high-power femtosecond laser pulse in air,” Quantum Electron. 33, 69–75 (2003). [CrossRef]
  35. Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).
  36. X. L. Liu and B.-S. Hu, “Micro-displacement system of pulse equivalent and return difference of a stepping motor,” Laser Technol. 35, 603–605 (2011).
  37. K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90, 203902 (2003). [CrossRef]
  38. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995). [CrossRef]
  39. N. L. Boling and A. J. Glass, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited