OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2701–2705

Diode-pumped 2 μm vibronic ( Tm 3 + , Yb 3 + ): KLu ( WO 4 ) 2 laser

Martha Segura, Xavier Mateos, Maria Cinta Pujol, Joan Josep Carvajal, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov  »View Author Affiliations

Applied Optics, Vol. 51, Issue 14, pp. 2701-2705 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on laser operation in a (6 at. % Tm, 5 at. % Yb): KLu ( WO 4 ) 2 codoped crystal. The vibrational frequencies of KLu ( WO 4 ) 2 are coupled to the electronic transitions of Tm 3 + at 1946 nm, creating virtual final laser levels at higher energy than the ground level H 6 3 of Tm 3 + . The longest recorded laser wavelength was 2039 nm, which is longer than permitted by a pure electronic transition in Tm 3 + ions in KLu ( WO 4 ) 2 . We show that every laser wavelength can be explained with the electron–phonon coupling effect, where the vibration frequencies were determined through Raman spectroscopy.

© 2012 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 18, 2011
Manuscript Accepted: January 9, 2012
Published: May 10, 2012

Martha Segura, Xavier Mateos, Maria Cinta Pujol, Joan Josep Carvajal, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov, "Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser," Appl. Opt. 51, 2701-2705 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007). [CrossRef]
  2. X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004). [CrossRef]
  3. X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006). [CrossRef]
  4. V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007). [CrossRef]
  5. A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998). [CrossRef]
  6. M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006). [CrossRef]
  7. A. Ellens, S. Schenker, A. Meijerink, and G. Blasse, “Vibronic transitions of Tm3+ in various lattices,” J. Lumin. 69, 1–15 (1996). [CrossRef]
  8. F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser,” Opt. Express 12, 1982–1989 (2004). [CrossRef]
  9. F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44, 1076–1082 (2008). [CrossRef]
  10. N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 µm,” Opt. Lett. 34, 3559–3561 (2009). [CrossRef]
  11. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990). [CrossRef]
  12. W. Ryba-Romanowski, R. Lisieckia, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011). [CrossRef]
  13. P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011). [CrossRef]
  14. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advanced Solid State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.
  15. Y. F. Li, Y. Z. Wang, and B. Q. Yao, “Comparative optical study of thulium-doped YAlO3 and GdVO4 single crystals,” Laser Phys. Lett. 5, 37–40 (2008). [CrossRef]
  16. L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002). [CrossRef]
  17. O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007). [CrossRef]
  18. L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002). [CrossRef]
  19. M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010). [CrossRef]
  20. S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited